5.7.18 Problems 1701 to 1800

Table 5.597: Solved using series method

#

ODE

Mathematica

Maple

16534

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16535

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (5+x \right ) y^{\prime }+10 y = 0 \]

16536

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

16537

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

16538

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

16539

\[ {}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

16540

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

16541

\[ {}x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

16542

\[ {}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

16543

\[ {}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

16544

\[ {}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

16545

\[ {}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

16546

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

16547

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16548

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

16549

\[ {}y^{\prime \prime }+x y = 0 \]

16550

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

16551

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

16552

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

16553

\[ {}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

16554

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

16555

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

16556

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

16557

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

16614

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16615

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

16616

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16617

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

16618

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

16619

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

16620

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

16621

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

17198

\[ {}y^{\prime } = 1-x y \]

17199

\[ {}y^{\prime } = \frac {y-x}{x +y} \]

17200

\[ {}y^{\prime } = y \sin \left (x \right ) \]

17201

\[ {}y^{\prime \prime }+x y = 0 \]

17202

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime } = 0 \]

17203

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = x \]

17204

\[ {}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

17205

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

17206

\[ {}y^{\prime }-2 x y = 0 \]

17207

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

17208

\[ {}y^{\prime \prime }-x y^{\prime }+y = 1 \]

17209

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

17210

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]

17211

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

17212

\[ {}y^{\prime } = {\mathrm e}^{y}+x y \]

17213

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17214

\[ {}\left (1+x \right ) y^{\prime }-n y = 0 \]

17215

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

18407

\[ {}y^{\prime } = 2 x y \]

18408

\[ {}y^{\prime }+y = 1 \]

18409

\[ {}x y^{\prime } = y \]

18410

\[ {}x^{2} y^{\prime } = y \]

18411

\[ {}y^{\prime } = 1+y^{2} \]

18412

\[ {}y^{\prime } = x -y \]

18413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

18415

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18416

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

18417

\[ {}y^{\prime \prime }+x y = 0 \]

18418

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+n^{2} y = 0 \]

18419

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

18420

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

18421

\[ {}x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

18422

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

18423

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

18424

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18425

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18426

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18427

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18428

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18429

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

18430

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

18431

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18432

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

18433

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

18434

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

18435

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

18436

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

18437

\[ {}y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

18438

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

18439

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

18440

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

18441

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

18442

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

18443

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

18444

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18445

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

18446

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

18447

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

18448

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]

18449

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

18450

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

18451

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

18976

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

18977

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

18978

\[ {}y^{\prime \prime }+y = 0 \]

18979

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

18980

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

18981

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]