5.9.72 Problems 7101 to 7192

Table 5.771: First order ode linear in derivative

#

ODE

Mathematica

Maple

19094

\[ {}\left (x -y\right ) y^{\prime } = x +y+1 \]

19095

\[ {}x -y-2-\left (2 x -2 y-3\right ) y^{\prime } = 0 \]

19096

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

19097

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

19098

\[ {}x \cos \left (x \right ) y^{\prime }+\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y = 1 \]

19099

\[ {}y-\sin \left (x^{2}\right ) x +x y^{\prime } = 0 \]

19100

\[ {}y^{\prime } x \ln \left (x \right )+y = 2 \ln \left (x \right ) \]

19101

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y+\sin \left (x \right ) \]

19102

\[ {}\left (1+x +x y^{2}\right ) y^{\prime }+y+y^{3} = 0 \]

19103

\[ {}y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime } = 0 \]

19104

\[ {}y^{\prime }+3 x^{2} y = x^{5} {\mathrm e}^{x^{3}} \]

19105

\[ {}y^{\prime }-\frac {\tan \left (y\right )}{1+x} = \left (1+x \right ) {\mathrm e}^{x} \sec \left (y\right ) \]

19106

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

19107

\[ {}y^{\prime }+\frac {2 y}{x} = \sin \left (x \right ) \]

19108

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

19109

\[ {}1+y+x^{2} y+\left (x^{3}+x \right ) y^{\prime } = 0 \]

19110

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

19111

\[ {}y^{\prime }+\frac {\tan \left (y\right )}{x} = \frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \]

19112

\[ {}y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2} \]

19113

\[ {}y^{\prime }+x = x \,{\mathrm e}^{\left (n -1\right ) y} \]

19114

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

19115

\[ {}2 y^{\prime }-y \sec \left (x \right ) = y^{3} \tan \left (x \right ) \]

19116

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

19117

\[ {}x +y y^{\prime } = \frac {a^{2} \left (x y^{\prime }-y\right )}{x^{2}+y^{2}} \]

19118

\[ {}1+4 x y+2 y^{2}+\left (1+4 x y+2 x^{2}\right ) y^{\prime } = 0 \]

19119

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

19120

\[ {}\left (y^{4} x^{4}+x^{2} y^{2}+x y\right ) y+\left (y^{4} x^{4}-x^{2} y^{2}+x y\right ) x y^{\prime } = 0 \]

19121

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

19122

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

19123

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

19124

\[ {}\left (20 x^{2}+8 x y+4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+x y+y^{2}+y^{3}\right ) x y^{\prime } = 0 \]

19125

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

19126

\[ {}2 y+3 x y^{\prime }+2 x y \left (3 y+4 x y^{\prime }\right ) = 0 \]

19128

\[ {}\frac {\left (x +y-a \right ) y^{\prime }}{x +y-b} = \frac {x +y+a}{x +y+b} \]

19129

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

19130

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

19131

\[ {}y^{\prime } = \left (4 x +y+1\right )^{2} \]

19132

\[ {}x y^{\prime }-y = x \sqrt {x^{2}+y^{2}} \]

19133

\[ {}x y^{\prime }+y \ln \left (y\right ) = x y \,{\mathrm e}^{x} \]

19134

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

19135

\[ {}x \left (-a^{2}+x^{2}+y^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

19136

\[ {}y^{\prime } = \frac {1+x^{2}+y^{2}}{2 x y} \]

19137

\[ {}x +y y^{\prime } = m \left (x y^{\prime }-y\right ) \]

19138

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

19139

\[ {}y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime } = 0 \]

19141

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

19142

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \]

19143

\[ {}x^{2}+y^{2}+x -\left (2 x^{2}+2 y^{2}-y\right ) y^{\prime } = 0 \]

19144

\[ {}2 y+3 x y^{\prime }+2 x y \left (3 y+4 x y^{\prime }\right ) = 0 \]

19145

\[ {}y \left (1+\frac {1}{x}\right )+\cos \left (y\right )+\left (x +\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

19146

\[ {}\left (2 x +2 y+3\right ) y^{\prime } = x +y+1 \]

19147

\[ {}y^{\prime } = \frac {x \left (2 \ln \left (x \right )+1\right )}{\sin \left (y\right )+y \cos \left (y\right )} \]

19148

\[ {}s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s} \]

19149

\[ {}y^{\prime } = {\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \]

19150

\[ {}y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right ) \]

19151

\[ {}y^{\prime }+\frac {\tan \left (y\right )}{x} = \frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \]

19152

\[ {}x^{2}-a y = \left (a x -y^{2}\right ) y^{\prime } \]

19153

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

19154

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

19155

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

19156

\[ {}y-x y^{\prime }+x^{2}+1+x^{2} \sin \left (y\right ) y^{\prime } = 0 \]

19157

\[ {}\sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3} \]

19158

\[ {}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0 \]

19237

\[ {}y = \sin \left (x \right ) y^{\prime }+\cos \left (x \right ) \]

19265

\[ {}-x y^{\prime }+y = x +y y^{\prime } \]

19277

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

19279

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

19280

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \]

19282

\[ {}x^{2} y^{2}-3 x y y^{\prime } = 2 y^{2}+x^{3} \]

19312

\[ {}-x y^{\prime }+y = a \left (y^{2}+y^{\prime }\right ) \]

19313

\[ {}-x y^{\prime }+y = b \left (1+x^{2} y^{\prime }\right ) \]

19509

\[ {}-x y^{\prime }+y = 0 \]

19510

\[ {}\cot \left (y\right )-\tan \left (x \right ) y^{\prime } = 0 \]

19511

\[ {}x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-x \,a^{2}\right ) y^{\prime } = 0 \]

19512

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

19513

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

19514

\[ {}1+y^{2}-x y y^{\prime } = 0 \]

19515

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

19516

\[ {}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]

19517

\[ {}2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

19518

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]

19519

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

19520

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

19521

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) y^{n} \]

19522

\[ {}y^{\prime }+x \sin \left (2 y\right ) = x^{3} \cos \left (y\right )^{2} \]

19523

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

19524

\[ {}x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

19525

\[ {}\left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0 \]

19526

\[ {}y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x y^{2}+x \right ) y^{\prime }}{4} = 0 \]

19527

\[ {}3 x^{2} y^{4}+2 x y+\left (2 y^{2} x^{3}-x^{2}\right ) y^{\prime } = 0 \]

19528

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

19560

\[ {}x y \left (-x y^{\prime }+y\right ) = x +y y^{\prime } \]