5.14.9 Problems 801 to 900

Table 5.865: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

10574

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a y+b = 0 \]

10575

\[ {}\ln \left (y^{\prime }\right )+a \left (x y^{\prime }-y\right ) = 0 \]

10576

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

10577

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

10578

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

10579

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

10580

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2}-1 = 0 \]

10581

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

10582

\[ {}a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y = 0 \]

10583

\[ {}\left (x y^{\prime }-y\right )^{n} f \left (y^{\prime }\right )+y g \left (y^{\prime }\right )+x h \left (y^{\prime }\right ) = 0 \]

10584

\[ {}f \left (x {y^{\prime }}^{2}\right )+2 x y^{\prime }-y = 0 \]

10585

\[ {}f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y = 0 \]

10586

\[ {}y^{\prime } f \left (x y y^{\prime }-y^{2}\right )-x^{2} y^{\prime }+x y = 0 \]

10587

\[ {}\phi \left (f \left (x , y, y^{\prime }\right ), g \left (x , y, y^{\prime }\right )\right ) = 0 \]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

12877

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12878

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

12879

\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \]

12880

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

12881

\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-y^{2} \left (x^{2}-y^{2}\right ) = 0 \]

12882

\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \]

12883

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12884

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12886

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

12887

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12888

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

12889

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12890

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12891

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

12892

\[ {}\left (x y^{\prime }-y\right )^{2} = 1+{y^{\prime }}^{2} \]

12893

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \]

12894

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

12895

\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

12896

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

12897

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

12898

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

12899

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12900

\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

12901

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

12902

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

12903

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0 \]

12904

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

12905

\[ {}y = \left (1+x \right ) {y^{\prime }}^{2} \]

12906

\[ {}\left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

12907

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

12908

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

12909

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

12910

\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \]

12911

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

12912

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

12913

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12914

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \]

12915

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

12916

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

12917

\[ {}4 {y^{\prime }}^{2} = 9 x \]

12918

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

13080

\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \]

13260

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

13861

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

13863

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

13865

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

13866

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

13873

\[ {}{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \]

13874

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

13880

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13881

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13884

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

13886

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

13897

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

13898

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

13899

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

13967

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

13969

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

13975

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

14155

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

14156

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

14157

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \]

14189

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

14215

\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \]

14216

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

14217

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

14218

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

14220

\[ {}y = x y^{\prime }+\sqrt {1-{y^{\prime }}^{2}} \]

14222

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

14223

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

14277

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

14330

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

14331

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

14332

\[ {}{y^{\prime }}^{2} = x^{6} \]

15784

\[ {}{y^{\prime }}^{2}+y = 0 \]

16125

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

16126

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

16127

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

16128

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

16129

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

16130

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

16131

\[ {}y = {y^{\prime }}^{2} t +3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]