5.14.10 Problems 901 to 1000

Table 5.867: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

16133

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

16162

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

16164

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

16165

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

16722

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

16723

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

16724

\[ {}\sin \left (y^{\prime }\right ) = x \]

16725

\[ {}\ln \left (y^{\prime }\right ) = x \]

16726

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

16727

\[ {}{\mathrm e}^{y^{\prime }} = x \]

16728

\[ {}\tan \left (y^{\prime }\right ) = x \]

16817

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

16818

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

16819

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

16820

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

16821

\[ {}{y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \]

16822

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

16823

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

16824

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

16825

\[ {}{y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

16826

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

16827

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

16828

\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

16829

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

16830

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

16831

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

16832

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

16833

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

16834

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

16835

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

16836

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

16837

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

16838

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

16839

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

16840

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

16841

\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

16842

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

16843

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

16844

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

16845

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

16846

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

16847

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

16852

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y y^{\prime }-4 x = 0 \]

16853

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

16854

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

16857

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

16858

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

16859

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

16861

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

16862

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{\prime } y^{2} \]

16863

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

16864

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

16865

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

16866

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

16904

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

16905

\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

16910

\[ {}{y^{\prime }}^{4} = 1 \]

16925

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

17936

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

17937

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

17938

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

17939

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

17940

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

17941

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

17942

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

17943

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

17944

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

17945

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha \]

17946

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

17947

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

17948

\[ {}y = \frac {k \left (x +y y^{\prime }\right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

17949

\[ {}x = y y^{\prime }+a {y^{\prime }}^{2} \]

17950

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

17951

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

17952

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

17953

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y y^{\prime }+y^{2}-1 = 0 \]

17954

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0 \]

17962

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

17963

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

17964

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

17965

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

17966

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0 \]

17967

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

17968

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

17969

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

18066

\[ {}x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

18559

\[ {}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

18560

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

18561

\[ {}y^{\prime } = {\mathrm e}^{z -y^{\prime }} \]

18563

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right ) = 1 \]

18573

\[ {}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2} \]

18579

\[ {}4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2} \]

18601

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

18603

\[ {}y-2 x y^{\prime }-y {y^{\prime }}^{2} = 0 \]

18707

\[ {}x = {y^{\prime }}^{2}+y \]

18708

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

18723

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x = 0 \]