5.20.20 Problems 1901 to 2000

Table 5.945: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

12955

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

12956

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12958

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

12959

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

12960

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

12961

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

12962

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

12964

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

12991

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

13028

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

13033

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

13038

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]

13096

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

13112

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13113

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13114

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13115

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13116

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13117

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13118

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13119

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13120

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

13121

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

13122

\[ {}x^{\prime \prime }+9 x = 0 \]

13123

\[ {}x^{\prime \prime }-12 x = 0 \]

13124

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

13125

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

13126

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

13127

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

13128

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

13129

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

13130

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

13131

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

13132

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

13133

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

13134

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

13135

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \]

13136

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

13137

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

13138

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 \cos \left (t \right ) t \]

13139

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

13140

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

13141

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

13142

\[ {}x^{\prime \prime }+x = t^{2} \]

13143

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

13144

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

13145

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

13146

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

13147

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]

13148

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]

13149

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]

13150

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]

13151

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]

13152

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]

13153

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]

13163

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

13164

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

13165

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13167

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

13168

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

13171

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

13174

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

13177

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

13178

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

13179

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

13180

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

13181

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

13182

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

13183

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

13186

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

13187

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

13188

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]

13189

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

13190

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]

13191

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

13192

\[ {}x^{\prime \prime }-2 x = 1 \]

13194

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]

13197

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]

13198

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]

13199

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]

13201

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]

13202

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]

13203

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]

13204

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]

13205

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]

13206

\[ {}x^{\prime \prime }+4 x = \frac {\operatorname {Heaviside}\left (t -5\right ) \left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]

13247

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

13248

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

13254

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13255

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

13256

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

13259

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

13261

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13264

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13265

\[ {}y^{\prime \prime }+y = 0 \]

13266

\[ {}y^{\prime \prime }+y = 0 \]

13267

\[ {}y^{\prime \prime }+y = 0 \]

13389

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13390

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13392

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]