5.1.17 Problems 1601 to 1700

Table 5.33: First order ode

#

ODE

Mathematica

Maple

4347

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

4348

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

4349

\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \]

4350

\[ {}y-2 x^{3} \tan \left (\frac {y}{x}\right )-x y^{\prime } = 0 \]

4351

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

4352

\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \]

4353

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

4354

\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

4355

\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \]

4356

\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \]

4357

\[ {}x^{2} y^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

4358

\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \]

4359

\[ {}1+y \cos \left (x \right )-\sin \left (x \right ) y^{\prime } = 0 \]

4360

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

4362

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

4363

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

4364

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

4365

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

4366

\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \]

4367

\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

4368

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

4369

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

4370

\[ {}\left (1+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) \]

4371

\[ {}y^{\prime } = \left (\sin \left (x \right )^{2}-y\right ) \cos \left (x \right ) \]

4372

\[ {}\left (1+x \right ) y^{\prime }-y = x \left (1+x \right )^{2} \]

4373

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

4374

\[ {}y^{\prime }+y^{2} = x^{2}+1 \]

4375

\[ {}3 x y^{\prime }-3 x y^{4} \ln \left (x \right )-y = 0 \]

4376

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

4377

\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

4378

\[ {}\left (1+x \right ) \left (y^{\prime }+y^{2}\right )-y = 0 \]

4379

\[ {}x y y^{\prime }+y^{2}-\sin \left (x \right ) = 0 \]

4380

\[ {}2 x^{3}-y^{4}+x y^{3} y^{\prime } = 0 \]

4381

\[ {}y^{\prime }-y \tan \left (x \right )+y^{2} \cos \left (x \right ) = 0 \]

4382

\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

4383

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

4384

\[ {}y = x y^{\prime }+{y^{\prime }}^{3} \]

4385

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

4386

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

4387

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

4388

\[ {}2 {y^{\prime }}^{2} \left (-x y^{\prime }+y\right ) = 1 \]

4389

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

4390

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

4391

\[ {}2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right ) \]

4392

\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

4393

\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \]

4394

\[ {}x y^{\prime }+y = 4 \sqrt {y^{\prime }} \]

4395

\[ {}2 x y^{\prime }-y = \ln \left (y^{\prime }\right ) \]

4396

\[ {}x y^{2} \left (x y^{\prime }+y\right ) = 1 \]

4397

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

4398

\[ {}y^{\prime } = \frac {y+2}{1+x} \]

4399

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

4400

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

4401

\[ {}2 \sqrt {x y}-y-x y^{\prime } = 0 \]

4402

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

4403

\[ {}2 y^{2} x^{3}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

4404

\[ {}y-1-x y+x y^{\prime } = 0 \]

4405

\[ {}x y^{\prime }-y = x \tan \left (\frac {y}{x}\right ) \]

4406

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x y} \]

4408

\[ {}2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

4409

\[ {}y^{\prime } = \frac {1}{x y+x^{3} y^{3}} \]

4410

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

4411

\[ {}{\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

4413

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

4415

\[ {}y+3 y^{2} x^{4}+\left (x +2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

4416

\[ {}x y^{\prime } = y+\sqrt {x^{2}-y^{2}} \]

4417

\[ {}2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

4418

\[ {}\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime } = 0 \]

4419

\[ {}y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

4420

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

4421

\[ {}2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

4423

\[ {}x^{2} \left (x y^{\prime }-y\right ) = y \left (x +y\right ) \]

4424

\[ {}y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

4425

\[ {}x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

4427

\[ {}y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

4428

\[ {}y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

4430

\[ {}2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

4431

\[ {}2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

4433

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

4434

\[ {}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

4435

\[ {}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

4437

\[ {}y \sin \left (x \right )+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime } = 0 \]

4438

\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

4439

\[ {}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

4440

\[ {}\left (1+\cos \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) = 0 \]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (-x y^{\prime }+y\right ) = 0 \]

4442

\[ {}2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-x^{2} y^{2}-3 x \right ) y^{\prime } = 0 \]

4443

\[ {}x y^{3}-1+y^{2} y^{\prime } x^{2} = 0 \]

4608

\[ {}y^{\prime } = f \left (x \right ) a \]

4609

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

4610

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

4611

\[ {}y^{\prime } = a +b x +c y \]

4612

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

4613

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

4614

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

4615

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]