5.24.30 Problems 2901 to 3000

Table 5.1073: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

13014

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

13015

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

13016

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

13017

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

13018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

13019

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

13020

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

13022

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

13023

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

13032

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

13043

\[ {}x^{\prime }+x^{\prime \prime } t = 1 \]

13072

\[ {}\frac {x^{\prime }+x^{\prime \prime } t}{t} = -2 \]

13154

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

13155

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

13156

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

13157

\[ {}x^{\prime \prime } t +4 x^{\prime }+\frac {2 x}{t} = 0 \]

13158

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

13159

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

13160

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

13161

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

13162

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

13166

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

13170

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

13172

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

13173

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

13175

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

13176

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

13249

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

13257

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13268

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13391

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

13394

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13395

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

13398

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

13399

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13400

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0 \]

13401

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13402

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

13403

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

13404

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

13523

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

13524

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

13525

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

13526

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

13527

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

13528

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

13529

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

13531

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

13532

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

13533

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

13534

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

13535

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

13536

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13537

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

13538

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

13539

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13540

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

13541

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13542

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13543

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

13544

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

13545

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13546

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

13547

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

13549

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

13550

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13551

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13552

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

13553

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

13554

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

13555

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

13556

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13557

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

13558

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

13559

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

13662

\[ {}x^{\prime \prime } t -2 x^{\prime }+9 t^{5} x = 0 \]

13663

\[ {}t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

13664

\[ {}\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

13665

\[ {}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

13666

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

13667

\[ {}\left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

13668

\[ {}t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

13669

\[ {}t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

13670

\[ {}t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

13671

\[ {}\sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

13672

\[ {}\frac {\left (t +1\right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

13673

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

13674

\[ {}\left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

13675

\[ {}x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

13676

\[ {}f \left (t \right ) x^{\prime \prime }+g \left (t \right ) x = 0 \]

13677

\[ {}x^{\prime \prime }+\left (t +1\right ) x = 0 \]

13682

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

13683

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

13684

\[ {}2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]

13685

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]

13698

\[ {}x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

13699

\[ {}x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]