5.24.31 Problems 3001 to 3100

Table 5.1075: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

13700

\[ {}x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

13701

\[ {}x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

13702

\[ {}x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0 \]

13784

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

13785

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13786

\[ {}\left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

13787

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

13788

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

13789

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

13793

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13795

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

13796

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13797

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13798

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]

13799

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]

13800

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]

13801

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

13802

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

13803

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

13804

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]

13805

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

13904

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13906

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

13909

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

13911

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

13915

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13917

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

13920

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

13921

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

13931

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13932

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13936

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13939

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

13942

\[ {}y^{\prime \prime } = 2 y^{3} \]

13943

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13958

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

13959

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

13960

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

13962

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

13963

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13965

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13970

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13974

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

13976

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

13977

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

13978

\[ {}y y^{\prime \prime } = 1 \]

13979

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

13984

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13985

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

13986

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

13987

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

13988

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

13989

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13990

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13991

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13992

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

13993

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

13994

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13997

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

13998

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

14000

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

14001

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

14002

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

14003

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

14004

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

14005

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

14006

\[ {}\frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

14007

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

14008

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

14009

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

14010

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

14011

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

14012

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

14013

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (x +2\right ) y}{x^{2} \left (1+x \right )} = 0 \]

14014

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

14015

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

14016

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

14017

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

14018

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

14087

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

14088

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

14089

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

14090

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

14091

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

14130

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14136

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

14137

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]