|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x^{2} y^{\prime \prime }+y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t y^{\prime \prime }+2 y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y^{\prime } y = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } \left (x +2\right )^{5} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }+x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}}
\]
|
✓ |
✗ |
✓ |
|
|
\[
{} x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1+y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 3 y^{\prime } y^{\prime \prime } = 2 y
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 2 y^{\prime \prime } = 3 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{3} y^{\prime \prime } = -1
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = {\mathrm e}^{2 y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2}
\]
|
✓ |
✓ |
✗ |
|