4.24.34 Problems 3301 to 3400

Table 4.1077: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

16375

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

16376

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

16377

\[ {} x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

16378

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

16379

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

16380

\[ {} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

16381

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16382

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16383

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16384

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16385

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16386

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16387

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16388

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16389

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

16390

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

16391

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16392

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16393

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16394

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16395

\[ {} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

16396

\[ {} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

16397

\[ {} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

16398

\[ {} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

16399

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16400

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16401

\[ {} 4 x^{2} y^{\prime \prime }+y = x^{3} \]

16402

\[ {} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16403

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16404

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16405

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16406

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

16407

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

16408

\[ {} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

16409

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

16410

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16411

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16412

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16413

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16414

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16415

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16416

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16417

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16418

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16419

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16420

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16421

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

16422

\[ {} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

16423

\[ {} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

16424

\[ {} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

16425

\[ {} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

16426

\[ {} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

16427

\[ {} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16482

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16483

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16524

\[ {} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16527

\[ {} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16528

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16529

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16530

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16531

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16532

\[ {} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16533

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16534

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16543

\[ {} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y^{\prime } y = 1 \]

16828

\[ {} x y^{\prime \prime \prime } = 2 \]

16829

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16830

\[ {} \left (x -1\right ) y^{\prime \prime } = 1 \]

16834

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16835

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

16838

\[ {} y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

16841

\[ {} x y^{\prime \prime } = y^{\prime } \]

16842

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

16843

\[ {} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16844

\[ {} x y^{\prime \prime } = y^{\prime }+x^{2} \]

16845

\[ {} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16847

\[ {} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16848

\[ {} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

16849

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

16850

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16851

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16852

\[ {} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

16853

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16854

\[ {} y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16855

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16857

\[ {} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16858

\[ {} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16859

\[ {} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

16860

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16861

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16862

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

16863

\[ {} 2 y^{\prime \prime } = 3 y^{2} \]

16864

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

16865

\[ {} y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16866

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16867

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16868

\[ {} y^{3} y^{\prime \prime } = -1 \]

16869

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

16870

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

16871

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]