4.25.8 Problems 701 to 800

Table 4.1107: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

16149

\[ {} y^{\prime \prime }+100 y = 0 \]

16150

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16151

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16152

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16153

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16154

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

16155

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

16156

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

16157

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

16158

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16159

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16160

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16163

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16164

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16165

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16166

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16167

\[ {} y^{\prime \prime }-16 y = 0 \]

16168

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16171

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16479

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16480

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16481

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16484

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16485

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16486

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16487

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16488

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16489

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16490

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16491

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16492

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16510

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16511

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16512

\[ {} y^{\prime \prime }+16 y = 0 \]

16513

\[ {} y^{\prime \prime }+25 y = 0 \]

16525

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16526

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16544

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

16545

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

16546

\[ {} x^{\prime \prime }+64 x = 0 \]

16547

\[ {} x^{\prime \prime }+100 x = 0 \]

16548

\[ {} x^{\prime \prime }+x = 0 \]

16549

\[ {} x^{\prime \prime }+4 x = 0 \]

16550

\[ {} x^{\prime \prime }+16 x = 0 \]

16551

\[ {} x^{\prime \prime }+256 x = 0 \]

16552

\[ {} x^{\prime \prime }+9 x = 0 \]

16553

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16554

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16555

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16556

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16557

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16558

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16559

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16581

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16582

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16832

\[ {} y^{\prime \prime }+y = 0 \]

16873

\[ {} y^{\prime \prime }-y = 0 \]

16874

\[ {} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16876

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16877

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16879

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16881

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16884

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16885

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

17091

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

17092

\[ {} x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17093

\[ {} x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17101

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17102

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17103

\[ {} y^{\prime \prime }-y = 0 \]

17104

\[ {} y^{\prime \prime }+y = 0 \]

17106

\[ {} y^{\prime \prime }+y = 0 \]

17107

\[ {} y^{\prime \prime }-y = 0 \]

17108

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17109

\[ {} y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17112

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17113

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17209

\[ {} x^{\prime \prime } = 0 \]

17212

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

17213

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

17473

\[ {} y^{\prime \prime }+y = 0 \]

17474

\[ {} y^{\prime \prime }+9 y = 0 \]

17475

\[ {} y^{\prime \prime }+y^{\prime }+16 y = 0 \]

17476

\[ {} y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17477

\[ {} y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17488

\[ {} y^{\prime \prime }+4 y = 0 \]

17489

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17492

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17493

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17504

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17505

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17506

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17507

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17508

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17509

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17510

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17511

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17512

\[ {} 6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17513

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17514

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]