4.25.7 Problems 601 to 700

Table 4.1105: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

15237

\[ {} y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

15238

\[ {} y^{\prime \prime }-25 y = 0 \]

15239

\[ {} y^{\prime \prime }+3 y^{\prime } = 0 \]

15240

\[ {} 4 y^{\prime \prime }-y = 0 \]

15241

\[ {} 3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

15242

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15243

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15244

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15245

\[ {} y^{\prime \prime }-9 y = 0 \]

15246

\[ {} y^{\prime \prime }-9 y = 0 \]

15247

\[ {} y^{\prime \prime }-9 y = 0 \]

15248

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15249

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15250

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

15251

\[ {} 25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

15252

\[ {} 16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

15253

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

15254

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15255

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15256

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15257

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15258

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15259

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15260

\[ {} y^{\prime \prime }+25 y = 0 \]

15261

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

15262

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15263

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

15264

\[ {} 9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

15265

\[ {} 4 y^{\prime \prime }+y = 0 \]

15266

\[ {} y^{\prime \prime }+16 y = 0 \]

15267

\[ {} y^{\prime \prime }+16 y = 0 \]

15268

\[ {} y^{\prime \prime }+16 y = 0 \]

15269

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15270

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15271

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15272

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15273

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15456

\[ {} y^{\prime \prime }+36 y = 0 \]

15457

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

15459

\[ {} y^{\prime \prime }-36 y = 0 \]

15460

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

15464

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

15465

\[ {} y^{\prime \prime }+3 y = 0 \]

15470

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

15473

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

15475

\[ {} y^{\prime \prime }+y^{\prime }-30 y = 0 \]

15476

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

15483

\[ {} y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

15485

\[ {} y^{\prime \prime }-5 y^{\prime } = 0 \]

15520

\[ {} y^{\prime \prime }-9 y = 0 \]

15523

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

15525

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

15526

\[ {} y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

15714

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15715

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

15716

\[ {} x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

15718

\[ {} y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

15743

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15744

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

15756

\[ {} 16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15765

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15766

\[ {} y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

16098

\[ {} y^{\prime \prime }-y = 0 \]

16099

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16101

\[ {} y^{\prime \prime }+9 y = 0 \]

16102

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16103

\[ {} y^{\prime \prime }+9 y = 0 \]

16107

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16108

\[ {} y^{\prime \prime }+16 y = 0 \]

16109

\[ {} y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16111

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16112

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16113

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16114

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16115

\[ {} y^{\prime \prime }+9 y = 0 \]

16116

\[ {} y^{\prime \prime }+49 y = 0 \]

16121

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16126

\[ {} y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16127

\[ {} y^{\prime \prime } = 0 \]

16128

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

16129

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

16130

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16131

\[ {} y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

16132

\[ {} y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16133

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16134

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

16135

\[ {} y^{\prime \prime }+16 y = 0 \]

16136

\[ {} y^{\prime \prime }+8 y = 0 \]

16137

\[ {} y^{\prime \prime }+7 y = 0 \]

16138

\[ {} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16139

\[ {} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16140

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16141

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16142

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

16143

\[ {} 3 y^{\prime \prime }-y^{\prime } = 0 \]

16144

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16145

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16146

\[ {} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16147

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16148

\[ {} y^{\prime \prime }+36 y = 0 \]