5.29.2 Problems 101 to 200

Table 5.1211: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

3778

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

3779

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

3790

\[ {}y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

3791

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4} \]

3794

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

4140

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

4426

\[ {}y^{\prime \prime } x = y^{\prime }+x \]

4509

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

4510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

5990

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

5992

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

5993

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

5998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

5999

\[ {}y^{\prime \prime } x -y^{\prime } = x^{2} \]

6014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

6015

\[ {}y^{\prime \prime } x -y^{\prime } = x^{2} \]

6196

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

6198

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

6199

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 \ln \left (x \right ) x^{2} \]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

6201

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

6215

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

6219

\[ {}y^{\prime \prime } x +y^{\prime } = 4 x \]

6532

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

6540

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

6541

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = {\mathrm e}^{x} x^{3} \]

6749

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +\ln \left (x \right ) x^{2} \]

6750

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

6753

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = \ln \left (1+x \right )^{2}+x -1 \]

6754

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

6756

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2 \]

6757

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8 \]

6758

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

6760

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

6762

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

6764

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1+x}{x} \]

6765

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

6766

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \]

6767

\[ {}y^{\prime \prime } x -3 y^{\prime }+\frac {3 y}{x} = x +2 \]

6768

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

6770

\[ {}y^{\prime \prime } x +2 y^{\prime }+4 x y = 4 \]

6771

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x} \]

6773

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \]

6774

\[ {}y^{\prime \prime } x -y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

6876

\[ {}\left (1-x \right ) y^{\prime \prime }-4 x y^{\prime }+5 y = \cos \left (x \right ) \]

6999

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

7490

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

7491

\[ {}y^{\prime \prime } x +x y^{\prime }-y = x^{2}+2 x \]

7492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7493

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

7494

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

7495

\[ {}2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

7496

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

7497

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

7498

\[ {}y^{\prime \prime } x +2 y^{\prime }+x y = \sec \left (x \right ) \]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

7500

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \cos \left (x \right )+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

7501

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

7702

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

7704

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

7707

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

7760

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

7764

\[ {}y^{\prime \prime } x -2 y^{\prime } = x^{3} \]

7911

\[ {}y^{\prime \prime } x +y^{\prime } = 4 x \]

7936

\[ {}y^{\prime \prime } x -3 y^{\prime } = 5 x \]

8000

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

8001

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

8002

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

8003

\[ {}y^{\prime \prime } x -\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

8004

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

8061

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]

8363

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]

8496

\[ {}y^{\prime \prime } x = y^{\prime }+x^{5} \]

8497

\[ {}y^{\prime \prime } x +y^{\prime }+x = 0 \]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

8805

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8806

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

8807

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

8808

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

8809

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

8810

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

8811

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

8812

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8813

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

8814

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

8815

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

8816

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

8817

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

8818

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

8819

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

8820

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]