4.20.38 Problems 3701 to 3800

Table 4.977: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

18799

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

18800

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right ) \]

18801

\[ {} y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \]

18802

\[ {} y^{\prime \prime \prime }-y = \left (1+{\mathrm e}^{x}\right )^{2} \]

18803

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

18804

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

18805

\[ {} y^{\prime \prime \prime }+8 y = x^{4}+2 x +1 \]

18806

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right ) \]

18807

\[ {} y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

18808

\[ {} y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

18809

\[ {} y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

18810

\[ {} y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x} \]

18811

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

18812

\[ {} y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

18813

\[ {} y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

18814

\[ {} y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

18815

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

18816

\[ {} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

18817

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

18818

\[ {} y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

18819

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

18820

\[ {} y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

18821

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x \]

18822

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right ) \]

18823

\[ {} y^{\prime \prime \prime }-13 y^{\prime }+12 y = x \]

18824

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right ) \]

18825

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

18826

\[ {} y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

18827

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

18828

\[ {} y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

18829

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = x^{4} \]

18830

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \]

18831

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

18832

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

18833

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

18834

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

18835

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x} \]

18836

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = x^{2} {\mathrm e}^{x} \]

18837

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x} \]

18838

\[ {} y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

18839

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

18840

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

18841

\[ {} y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

18842

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

18843

\[ {} y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18875

\[ {} y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

18877

\[ {} y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

18878

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

18890

\[ {} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18891

\[ {} y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

18907

\[ {} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

18914

\[ {} y^{\prime \prime } = \frac {a}{x} \]

18916

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

18917

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

18920

\[ {} a y^{\prime \prime } = y^{\prime } \]

18922

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

19080

\[ {} y^{\prime \prime }-n^{2} y = 0 \]

19081

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

19082

\[ {} 2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

19083

\[ {} y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

19084

\[ {} 9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

19085

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

19086

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19087

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19088

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

19089

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

19090

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19091

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19092

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19093

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19094

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

19095

\[ {} y^{\prime \prime }-y = 2+5 x \]

19096

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

19097

\[ {} y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

19098

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

19099

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

19100

\[ {} y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

19101

\[ {} y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

19102

\[ {} y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

19103

\[ {} y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

19104

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

19105

\[ {} y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

19106

\[ {} y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

19107

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

19108

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

19109

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

19110

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

19111

\[ {} y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

19112

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

19113

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

19114

\[ {} y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

19115

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

19116

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

19117

\[ {} y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

19118

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

19119

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

19120

\[ {} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

19121

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

19122

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

19123

\[ {} y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]