4.24.16 Problems 1501 to 1600

Table 4.1041: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

9774

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

9775

\[ {} x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

9776

\[ {} x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

9777

\[ {} x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

9778

\[ {} x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

9779

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

9780

\[ {} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x y^{\prime }-\left (-x^{2}+35\right ) y = 0 \]

9781

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

9782

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

9783

\[ {} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

9784

\[ {} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

9785

\[ {} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

9786

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

9787

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

9788

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

9789

\[ {} \left (1+2 t \right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

9790

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

9791

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

9792

\[ {} y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

9793

\[ {} 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

9794

\[ {} 2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

9795

\[ {} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

9796

\[ {} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

9797

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

9798

\[ {} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

9799

\[ {} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

9800

\[ {} t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]

9801

\[ {} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

9802

\[ {} t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

9803

\[ {} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

9804

\[ {} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

9805

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

9806

\[ {} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+y = 0 \]

9807

\[ {} 4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

9808

\[ {} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

9809

\[ {} z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

9810

\[ {} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

9811

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

9812

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

9813

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9814

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

9815

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 0 \]

9816

\[ {} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

9817

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

9818

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

9819

\[ {} \left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

9820

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

9821

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x +2\right ) y = 0 \]

9822

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

9823

\[ {} 4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

9824

\[ {} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

9825

\[ {} 4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

9826

\[ {} 6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

9827

\[ {} 3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

9828

\[ {} 2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

9829

\[ {} 4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

9830

\[ {} x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

9831

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

9832

\[ {} x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

9833

\[ {} x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

9834

\[ {} x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

9835

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

9836

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

9837

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

9838

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

9839

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

9840

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

9841

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

9842

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y = 0 \]

9843

\[ {} x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

9844

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

9845

\[ {} x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

9846

\[ {} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

9847

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

9848

\[ {} x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

9849

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

9850

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

9851

\[ {} 2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

9852

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9853

\[ {} x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

9854

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

9855

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

9856

\[ {} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

9857

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

9858

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

9859

\[ {} x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 x y}{16} = 0 \]

9860

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

9861

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

9862

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

9863

\[ {} 2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

9864

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

9865

\[ {} 2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

9866

\[ {} 2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

9867

\[ {} x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

9868

\[ {} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

9869

\[ {} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

9870

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

9871

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

9872

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

9873

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]