6.67 Problems 6601 to 6700

Table 6.133: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6601

\[ {} -{y^{\prime }}^{2}+4 {y^{\prime }}^{3} y+y y^{\prime \prime } = 0 \]

6602

\[ {} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6603

\[ {} {y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2} = 0 \]

6604

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2} = 4 x y \left (x y^{\prime }-y\right )^{3} \]

6605

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6606

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

6607

\[ {} f \left (y^{\prime \prime }\right )+x y^{\prime \prime } = y^{\prime } \]

6608

\[ {} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime } = {y^{\prime }}^{2}-y y^{\prime \prime } \]

6609

\[ {} f \left (y^{\prime \prime }, y^{\prime }-x y^{\prime \prime }, y-x y^{\prime }+\frac {x^{2} y^{\prime \prime }}{2}\right ) = 0 \]

6610

\[ {} y^{\prime \prime \prime } = 0 \]

6611

\[ {} y^{\prime \prime \prime } = \cos \left (x \right )+1 \]

6612

\[ {} \sin \left (x \right )+y^{\prime \prime \prime } = 0 \]

6613

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{3} \]

6614

\[ {} y^{\prime \prime \prime } = y \]

6615

\[ {} y^{\prime \prime \prime } = y+x^{2} \]

6616

\[ {} y^{\prime \prime \prime } = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2}+y \]

6617

\[ {} a y+y^{\prime \prime \prime } = 0 \]

6618

\[ {} y^{\prime \prime \prime } = x y \]

6619

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

6620

\[ {} y^{\prime \prime \prime } = y^{\prime } \]

6621

\[ {} y^{\prime }+y^{\prime \prime \prime } = x^{3}+\cos \left (x \right ) \]

6622

\[ {} 4 y-2 y^{\prime }+y^{\prime \prime \prime } = 0 \]

6623

\[ {} 4 y-2 y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{x} \cos \left (x \right ) \]

6624

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = 0 \]

6625

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = 3 \,{\mathrm e}^{x} \]

6626

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = x^{2} {\mathrm e}^{x} \]

6627

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = -3 \,{\mathrm e}^{2 x}+x^{2} \]

6628

\[ {} y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0 \]

6629

\[ {} y^{\prime \prime \prime } = a^{2} y \]

6630

\[ {} y+2 x y^{\prime }+y^{\prime \prime \prime } = 0 \]

6631

\[ {} a y+2 a x y^{\prime }+y^{\prime \prime \prime } = 0 \]

6632

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

6633

\[ {} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6634

\[ {} y+y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6635

\[ {} -3 y+y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6636

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \]

6637

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

6638

\[ {} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6639

\[ {} 4 y+2 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = \sin \left (2 x \right ) \]

6640

\[ {} -15 y-7 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6641

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6642

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = \left (x -1\right ) x \]

6643

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

6644

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = \sinh \left (x \right ) \]

6645

\[ {} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6646

\[ {} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 3 x^{2}+\sin \left (x \right ) \]

6647

\[ {} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x}+3 x^{2} \]

6648

\[ {} 10 y+3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6649

\[ {} 2 a^{2} y-a^{2} y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6650

\[ {} 2 a^{2} y-a^{2} y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = \sinh \left (x \right ) \]

6651

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

6652

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

6653

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

6654

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = \cosh \left (x \right ) \]

6655

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

6656

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x \,{\mathrm e}^{-x} \]

6657

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \left (1-x^{2} {\mathrm e}^{x}\right ) \]

6658

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \left (-x^{2}+2\right ) {\mathrm e}^{-x} \]

6659

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

6660

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

6661

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 0 \]

6662

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

6663

\[ {} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6664

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

6665

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{2} {\mathrm e}^{2 x} \]

6666

\[ {} -a^{3} y+3 a^{2} y^{\prime }-3 a y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6667

\[ {} -a^{3} y+3 a^{2} y^{\prime }-3 a y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

6668

\[ {} y^{\prime \prime \prime } = a y^{\prime \prime } \]

6669

\[ {} \operatorname {a3} y+\operatorname {a2} y^{\prime }+\operatorname {a1} y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6670

\[ {} -8 a x y-2 \left (-4 x^{2}-2 a +1\right ) y^{\prime }-6 x y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6671

\[ {} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6672

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6673

\[ {} -y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime } = \cot \left (x \right ) \]

6674

\[ {} \sin \left (x \right ) y-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = \ln \left (x \right ) \]

6675

\[ {} 2 y \left (2 f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right )+\left (4 g \left (x \right )+f^{\prime }\left (x \right )+2 {f^{\prime }\left (x \right )}^{2}\right ) y^{\prime }+3 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6676

\[ {} f \left (x \right ) y+y^{\prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6677

\[ {} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

6678

\[ {} -3 y-11 y^{\prime }-8 y^{\prime \prime }+4 y^{\prime \prime \prime } = 0 \]

6679

\[ {} 18 \,{\mathrm e}^{x}-3 y-11 y^{\prime }-8 y^{\prime \prime }+4 y^{\prime \prime \prime } = 0 \]

6680

\[ {} x y^{\prime \prime \prime } = 2 \]

6681

\[ {} x y+3 y^{\prime }+x y^{\prime \prime \prime } = 0 \]

6682

\[ {} -y+x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

6683

\[ {} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

6684

\[ {} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = -x^{2}+1 \]

6685

\[ {} -x^{2} y+3 y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

6686

\[ {} 2 y+4 x y^{\prime }-\left (-x^{2}+3\right ) y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

6687

\[ {} -2 y^{\prime }-\left (x +4\right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime \prime \prime } = 0 \]

6688

\[ {} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6689

\[ {} 2 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = a \]

6690

\[ {} 3 x y+y^{\prime } \left (x^{2}+2\right )+4 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right ) \]

6691

\[ {} 4 y^{\prime }+5 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = \ln \left (x \right ) \]

6692

\[ {} 6 y^{\prime }+6 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6693

\[ {} a \,x^{2} y+6 y^{\prime }+6 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6694

\[ {} 6 n y^{\prime }-2 \left (n +1\right ) x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6695

\[ {} 2 x^{3} y+\left (-2 x^{3}+6\right ) y^{\prime }+x \left (-x^{2}+6\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6696

\[ {} 10 y^{\prime }+8 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime \prime } = 0 \]

6697

\[ {} -2 x y+y^{\prime } \left (x^{2}+2\right )-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime \prime \prime } = 0 \]

6698

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime } = 0 \]

6699

\[ {} y^{\prime }+\left (x +2\right ) y^{\prime \prime }+\left (x +2\right )^{2} y^{\prime \prime \prime } = 0 \]

6700

\[ {} y^{\prime }+8 x y^{\prime \prime }+4 x^{2} y^{\prime \prime \prime } = 0 \]