6.136 Problems 13501 to 13600

Table 6.271: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13501

\[ {} y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) \left ({\mathrm e}^{\lambda x} a +b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

13502

\[ {} y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (f \left (x \right ) a -\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \]

13503

\[ {} y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

13504

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \]

13505

\[ {} y^{\prime } = f \left (x \right ) y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \]

13506

\[ {} y^{\prime } = f \left (x \right ) y^{2}+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x} \]

13507

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (f \left (x \right ) a +\lambda \right )+a \lambda \]

13508

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \coth \left (\lambda x \right )^{2} \left (f \left (x \right ) a +\lambda \right )+a \lambda \]

13509

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \]

13510

\[ {} x y^{\prime } = f \left (x \right ) y^{2}+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \]

13511

\[ {} x y^{\prime } = f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \]

13512

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \]

13513

\[ {} y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \]

13514

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \]

13515

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \]

13516

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \]

13517

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (f \left (x \right ) a -\lambda \right )+a \lambda \]

13518

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (f \left (x \right ) a -\lambda \right )+a \lambda \]

13519

\[ {} y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \]

13520

\[ {} y^{\prime } = f \left (x \right ) y^{2}-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

13521

\[ {} y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \]

13522

\[ {} y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \]

13523

\[ {} y^{\prime } = \frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \]

13524

\[ {} f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0 \]

13525

\[ {} y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+{\mathrm e}^{\lambda x} a \]

13526

\[ {} y^{\prime } = f \left (x \right ) y^{2}+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \]

13527

\[ {} y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

13528

\[ {} y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \]

13529

\[ {} y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \]

13530

\[ {} y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \]

13531

\[ {} x^{2} y^{\prime } = x^{4} f \left (x \right ) y^{2}+1 \]

13532

\[ {} x^{2} y^{\prime } = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \]

13533

\[ {} y^{\prime } = f \left (x \right ) y^{2}+g \left (x \right ) y+h \left (x \right ) \]

13534

\[ {} y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \]

13535

\[ {} y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {{\mathrm e}^{\lambda x} a +b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \]

13536

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \]

13537

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\tanh \left (\lambda x \right )\right )}{\cosh \left (\lambda x \right )^{4}} \]

13538

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \]

13539

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \]

13540

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \]

13541

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \]

13542

\[ {} y y^{\prime }-y = A \]

13543

\[ {} y y^{\prime }-y = A x +B \]

13544

\[ {} y y^{\prime }-y = -\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \]

13545

\[ {} y y^{\prime }-y = 2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \]

13546

\[ {} y y^{\prime }-y = A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \]

13547

\[ {} y y^{\prime }-y = A \,x^{k -1}-k B \,x^{k}+k \,B^{2} x^{2 k -1} \]

13548

\[ {} y y^{\prime }-y = \frac {A}{x}-\frac {A^{2}}{x^{3}} \]

13549

\[ {} y y^{\prime }-y = A +B \,{\mathrm e}^{-\frac {2 x}{A}} \]

13550

\[ {} y y^{\prime }-y = A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \]

13551

\[ {} y y^{\prime }-y = -\frac {2 \left (1+m \right )}{\left (3+m \right )^{2}}+A \,x^{m} \]

13552

\[ {} y y^{\prime }-y = -\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \]

13553

\[ {} y y^{\prime }-y = \frac {2 m -2}{\left (m -3\right )^{2}}+\frac {2 A \left (m \left (3+m \right ) \sqrt {x}+\left (4 m^{2}+3 m +9\right ) A +\frac {3 m \left (3+m \right ) A^{2}}{\sqrt {x}}\right )}{\left (m -3\right )^{2}} \]

13554

\[ {} y y^{\prime }-y = \frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \]

13555

\[ {} y y^{\prime }-y = \frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \]

13556

\[ {} y y^{\prime }-y = -\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

13557

\[ {} y y^{\prime }-y = \frac {A}{x} \]

13558

\[ {} y y^{\prime }-y = -\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \]

13559

\[ {} y y^{\prime }-y = \frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \]

13560

\[ {} y y^{\prime }-y = 2 x +\frac {A}{x^{2}} \]

13561

\[ {} y y^{\prime }-y = -\frac {6 X}{25}+\frac {2 A \left (2 \sqrt {x}+19 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{25} \]

13562

\[ {} y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \]

13563

\[ {} y y^{\prime }-y = -\frac {4 x}{25}+\frac {A}{\sqrt {x}} \]

13564

\[ {} y y^{\prime }-y = -\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \]

13565

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \]

13566

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \]

13567

\[ {} y y^{\prime }-y = -\frac {2 x}{9}+\frac {A}{\sqrt {x}} \]

13568

\[ {} y y^{\prime }-y = -\frac {5 x}{36}+\frac {A}{x^{{7}/{5}}} \]

13569

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

13570

\[ {} y y^{\prime }-y = -\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \]

13571

\[ {} y y^{\prime }-y = -\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \]

13572

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \]

13573

\[ {} y y^{\prime }-y = \frac {A}{\sqrt {x}} \]

13574

\[ {} y y^{\prime }-y = \frac {A}{x^{2}} \]

13575

\[ {} y y^{\prime }-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (n +1\right ) \left (3+n \right ) A^{2}}{\sqrt {x}}\right ) \]

13576

\[ {} y y^{\prime }-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (3+2 n \right ) A^{2}}{\sqrt {x}}\right ) \]

13577

\[ {} y y^{\prime }-y = A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \]

13578

\[ {} y y^{\prime }-y = 2 A^{2}-A \sqrt {x} \]

13579

\[ {} y y^{\prime }-y = -\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \]

13580

\[ {} y y^{\prime }-y = -\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \]

13581

\[ {} y y^{\prime }-y = -\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

13582

\[ {} y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {b^{2}+x^{2}}}{8}+\frac {3 b^{2}}{16 \sqrt {b^{2}+x^{2}}} \]

13583

\[ {} y y^{\prime }-y = \frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \]

13584

\[ {} y y^{\prime }-y = -\frac {3 x}{32}-\frac {3 \sqrt {a^{2}+x^{2}}}{32}+\frac {15 a^{2}}{64 \sqrt {a^{2}+x^{2}}} \]

13585

\[ {} y y^{\prime }-y = A \,x^{2}-\frac {9}{625 A} \]

13586

\[ {} y y^{\prime }-y = -\frac {6}{25} x -A \,x^{2} \]

13587

\[ {} y y^{\prime }-y = \frac {6}{25} x -A \,x^{2} \]

13588

\[ {} y y^{\prime }-y = 12 x +\frac {A}{x^{{5}/{2}}} \]

13589

\[ {} y y^{\prime }-y = \frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \]

13590

\[ {} y y^{\prime }-y = 2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

13591

\[ {} y y^{\prime }-y = 2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

13592

\[ {} y y^{\prime }-y = -\frac {28 x}{121}+\frac {2 A \left (5 \sqrt {x}+106 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{121} \]

13593

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \]

13594

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+A \sqrt {x} \]

13595

\[ {} y y^{\prime }-y = 6 x +\frac {A}{x^{4}} \]

13596

\[ {} y y^{\prime }-y = 20 x +\frac {A}{\sqrt {x}} \]

13597

\[ {} y y^{\prime }-y = \frac {15 x}{4}+\frac {A}{x^{7}} \]

13598

\[ {} y y^{\prime }-y = -\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

13599

\[ {} y y^{\prime }-y = -\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \]

13600

\[ {} y y^{\prime }-y = -\frac {4 x}{25}+\frac {A \left (7 \sqrt {x}+49 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{50} \]