| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+17 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = \arctan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = \arctan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-11 y^{\prime }+30 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|