4.23.4 Problems 301 to 400

Table 4.1343: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

14742

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

14743

\[ {} 4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

14746

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

14747

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

14748

\[ {} y^{\prime }+y^{\prime \prime \prime } = 2 x^{2}+4 \sin \left (x \right ) \]

14749

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

14750

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

14751

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

14754

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

14755

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

14770

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]

14771

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]

14777

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

14778

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

14779

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

14780

\[ {} y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

14781

\[ {} y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+\sin \left (2 x \right ) {\mathrm e}^{-x} \]

14782

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right ) \]

14783

\[ {} y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

14784

\[ {} -4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime } = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

14785

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

14811

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

14935

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

14936

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

15061

\[ {} x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

15062

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

15063

\[ {} x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

15064

\[ {} x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

15191

\[ {} y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

15193

\[ {} x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

15194

\[ {} x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

15205

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

15210

\[ {} y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

15211

\[ {} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

15214

\[ {} x^{\prime \prime \prime \prime }+x = t^{3} \]

15218

\[ {} y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

15219

\[ {} y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

15242

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

15252

\[ {} y^{\prime \prime \prime } = 1 \]

15362

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

15363

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

15364

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

15365

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

15366

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

15367

\[ {} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

15376

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

15378

\[ {} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

15551

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

15552

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

15553

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 8 \cos \left (a x \right ) \]

15797

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

15798

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

15799

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3+\cos \left (2 x \right ) \]

15800

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

15801

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

15802

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

15803

\[ {} y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

15806

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

15807

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3 x +4 \]

15814

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

15821

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

16287

\[ {} y^{\prime \prime \prime \prime } = 1 \]

16557

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

16580

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

16707

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

16774

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

16775

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

16776

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

16777

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

16778

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

16779

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

16780

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

16781

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

16782

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = \sin \left (3 x \right ) x^{2} \]

16783

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

16784

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

16785

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

16786

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

16787

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

16816

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 30 \,{\mathrm e}^{3 x} \]

16819

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

16820

\[ {} y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

16844

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

16868

\[ {} y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

16869

\[ {} y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

16884

\[ {} y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

16932

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

16933

\[ {} y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

17070

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

17693

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

17694

\[ {} y^{\prime \prime \prime \prime }-16 y = 1 \]

17695

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

17696

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

17697

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

17698

\[ {} y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

17699

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

17700

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

17701

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

17702

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

17703

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]