4.8.12 Problems 1101 to 1200

Table 4.817: Third and higher order ode

#

ODE

Mathematica

Maple

Sympy

15551

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

15552

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

15553

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 8 \cos \left (a x \right ) \]

15612

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

15631

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

15768

\[ {} x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

15778

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

15784

\[ {} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15785

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

15786

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

15787

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

15788

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

15789

\[ {} 36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15790

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

15791

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

15792

\[ {} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

15794

\[ {} y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

15795

\[ {} y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

15797

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

15798

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

15799

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

15800

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

15801

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

15802

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

15803

\[ {} y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

15804

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

15805

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

15806

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

15807

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

15814

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

15821

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

15829

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

16287

\[ {} y^{\prime \prime \prime \prime } = 1 \]

16511

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16512

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

16513

\[ {} y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

16514

\[ {} y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

16534

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16535

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

16554

\[ {} y^{\prime \prime \prime }+y = 0 \]

16557

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

16558

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

16579

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

16580

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

16581

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

16582

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

16594

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16595

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

16600

\[ {} y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

16601

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

16640

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

16641

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

16642

\[ {} y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

16643

\[ {} y^{\prime \prime \prime \prime }-81 y = 0 \]

16644

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

16645

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

16646

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

16647

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

16648

\[ {} y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

16649

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

16650

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

16651

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

16652

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16653

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

16654

\[ {} y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

16655

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

16656

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

16657

\[ {} y^{\prime \prime \prime }+216 y = 0 \]

16658

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

16659

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

16660

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

16661

\[ {} y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

16662

\[ {} 16 y^{\prime \prime \prime \prime }-y = 0 \]

16663

\[ {} 4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

16664

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

16665

\[ {} y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

16690

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

16691

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

16692

\[ {} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

16693

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

16694

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

16695

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

16696

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16697

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

16707

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

16774

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

16775

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

16776

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

16777

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

16778

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

16779

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

16780

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

16781

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

16782

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = \sin \left (3 x \right ) x^{2} \]

16783

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

16784

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

16785

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

16786

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

16787

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

16816

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 30 \,{\mathrm e}^{3 x} \]