4.14.14 Problems 1301 to 1355

Table 4.1149: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

Sympy

24930

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

24931

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

24932

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

24933

\[ {} y = x y^{\prime }+{y^{\prime }}^{n} \]

24934

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

24935

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

24936

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

24937

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

24938

\[ {} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

24939

\[ {} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

24940

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

24941

\[ {} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

24942

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

24943

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

24944

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

24945

\[ {} 8 y = {y^{\prime }}^{2}+3 x^{2} \]

24946

\[ {} x {y^{\prime }}^{2}+y y^{\prime } = 3 y^{4} \]

24947

\[ {} 9 x {y^{\prime }}^{2}+3 y y^{\prime }+y^{8} = 0 \]

24948

\[ {} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0 \]

24949

\[ {} 4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0 \]

24950

\[ {} 4 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

24951

\[ {} 9 {y^{\prime }}^{2}+12 y^{4} y^{\prime } x +4 y^{5} = 0 \]

24952

\[ {} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1 = 0 \]

24953

\[ {} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

24954

\[ {} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

24955

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

24956

\[ {} x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

24957

\[ {} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24958

\[ {} y {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

24959

\[ {} {y^{\prime }}^{3} y-3 x y^{\prime }+3 y = 0 \]

24960

\[ {} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24961

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

24962

\[ {} 6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

24963

\[ {} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

24964

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

24965

\[ {} x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

24966

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

24967

\[ {} y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

24968

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

24969

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

24970

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

24971

\[ {} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

24972

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

24973

\[ {} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

24974

\[ {} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

24975

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

24976

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

24977

\[ {} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0 \]

24978

\[ {} x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2} = 0 \]

24979

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

24980

\[ {} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

24981

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

24982

\[ {} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

24983

\[ {} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

24984

\[ {} {y^{\prime }}^{2}+y y^{\prime }-x -1 = 0 \]