| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y = x^{6} {y^{\prime }}^{3}-x y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+{y^{\prime }}^{n}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+x^{3} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 8 y = {y^{\prime }}^{2}+3 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+y y^{\prime } = 3 y^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x {y^{\prime }}^{2}+3 y y^{\prime }+y^{8} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 {y^{\prime }}^{2}+12 y^{4} y^{\prime } x +4 y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-y y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y {y^{\prime }}^{2}-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3} y-3 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+y y^{\prime }-x -1 = 0
\]
|
✓ |
✓ |
✗ |
|