2.3.11 first order ode exact

Table 2.417: first order ode exact

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

19

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

21

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = -x +y+1 \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = y-x \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

46

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

47

\[ {}y^{\prime } = 64^{{1}/{3}} \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

63

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}y^{\prime } x +2 y = 3 x \]
i.c.

[_linear]

78

\[ {}y^{\prime } x +5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

81

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

82

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

83

\[ {}y+y^{\prime } x = 3 x y \]
i.c.

[_separable]

84

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

89

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

90

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

91

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

93

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

97

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

101

\[ {}y^{\prime } = 1+2 x y \]

[_linear]

102

\[ {}2 y^{\prime } x = y+2 x \cos \left (x \right ) \]
i.c.

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

104

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) \]

[_linear]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

108

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

113

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

129

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

132

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

133

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

134

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

138

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

139

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

140

\[ {}1+y \,{\mathrm e}^{x y}+\left (2 y+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

141

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

142

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

143

\[ {}3 y^{3} x^{2}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

144

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

145

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

179

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

182

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

183

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

195

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{x y}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

198

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

199

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

201

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

205

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

206

\[ {}y+y^{\prime } x = 2 \,{\mathrm e}^{2 x} \]

[_linear]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

661

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

663

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = -x +y+1 \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x -y+1 \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

677

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

682

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

683

\[ {}y^{\prime } = 4 \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

698

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+y^{\prime } x = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}2 y+y^{\prime } x = 3 x \]
i.c.

[_linear]

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 y^{\prime } x +y = 12 x \]

[_linear]

712

\[ {}-y+y^{\prime } x = x \]
i.c.

[_linear]

713

\[ {}2 y^{\prime } x -3 y = 9 x^{3} \]

[_linear]

714

\[ {}y+y^{\prime } x = 3 x y \]
i.c.

[_separable]

715

\[ {}y^{\prime } x +3 y = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}y^{\prime } x -3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

720

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

721

\[ {}y^{\prime } x = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

722

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

724

\[ {}y^{\prime } x = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}y^{\prime } x +\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

728

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

732

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

753

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

756

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

757

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

762

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

763

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

764

\[ {}1+y \,{\mathrm e}^{x y}+\left (2 y+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

765

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

766

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

767

\[ {}3 y^{3} x^{2}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

768

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

774

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

787

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{x y}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

790

\[ {}y^{\prime } x +3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

791

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

793

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

798

\[ {}y+y^{\prime } x = 2 \,{\mathrm e}^{2 x} \]

[_linear]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {x +3 y}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

805

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1098

\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1101

\[ {}\frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right ) \]

[_linear]

1102

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1103

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \]

[_linear]

1108

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1110

\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{2 t} t \]
i.c.

[[_linear, ‘class A‘]]

1111

\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1113

\[ {}\frac {2 y}{t}+y^{\prime } = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1114

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1115

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1116

\[ {}4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t} \]
i.c.

[_linear]

1117

\[ {}\left (1+t \right ) y+t y^{\prime } = t \]
i.c.

[_linear]

1118

\[ {}-\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (1+t \right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1122

\[ {}2 y+t y^{\prime } = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1123

\[ {}\cos \left (t \right ) y+\sin \left (t \right ) y^{\prime } = {\mathrm e}^{t} \]
i.c.

[_linear]

1124

\[ {}\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1126

\[ {}\frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1127

\[ {}-y+y^{\prime } = 1+3 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1166

\[ {}\ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

[_linear]

1167

\[ {}y+\left (t -4\right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1168

\[ {}\tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1171

\[ {}y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

[_linear]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (y-2\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (y^{2}-1\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1193

\[ {}3+2 x +\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

1195

\[ {}2+3 x^{2}-2 x y+\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1199

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

1201

\[ {}2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact]

1202

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1206

\[ {}-1+9 x^{2}+y+\left (x -4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1207

\[ {}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1208

\[ {}y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1210

\[ {}2 x y+3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1212

\[ {}1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1214

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1215

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {3}{y}+\left (\frac {3 x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1216

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1217

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1219

\[ {}y^{\prime } = \frac {1+\cos \left (x \right )}{2-\sin \left (y\right )} \]

[_separable]

1220

\[ {}y^{\prime } = \frac {2 x +y}{3-x +3 y^{2}} \]
i.c.

[_rational]

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1222

\[ {}y^{\prime } = \frac {-1-2 x y-y^{2}}{x^{2}+2 x y} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1223

\[ {}x y+y^{\prime } x = 1-y \]
i.c.

[_linear]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1225

\[ {}2 y+y^{\prime } x = \frac {\sin \left (x \right )}{x} \]
i.c.

[_linear]

1226

\[ {}y^{\prime } = \frac {-1-2 x y}{x^{2}+2 y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1228

\[ {}x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime } = 0 \]

[_exact]

1229

\[ {}y^{\prime }+y = \frac {1}{{\mathrm e}^{x}+1} \]

[_linear]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1232

\[ {}\left ({\mathrm e}^{x}+1\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1233

\[ {}y^{\prime } = \frac {-{\mathrm e}^{2 y} \cos \left (x \right )+\cos \left (y\right ) {\mathrm e}^{-x}}{2 \,{\mathrm e}^{2 y} \sin \left (x \right )-\sin \left (y\right ) {\mathrm e}^{-x}} \]

[NONE]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1235

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x^{2}-2 x} \]

[[_linear, ‘class A‘]]

1236

\[ {}y^{\prime } = \frac {3 x^{2}-2 y-y^{3}}{2 x +3 x y^{2}} \]

[_rational]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1238

\[ {}\frac {-4+6 x y+2 y^{2}}{3 x^{2}+4 x y+3 y^{2}}+y^{\prime } = 0 \]

[_rational]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1240

\[ {}\left (1+t \right ) y+t y^{\prime } = {\mathrm e}^{2 t} \]

[_linear]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1242

\[ {}\frac {2 x}{y}-\frac {y}{x^{2}+y^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1244

\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1520

\[ {}y+y^{\prime } x = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1530

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]
i.c.

[_linear]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}y^{\prime } x +y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}y^{\prime } x +3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}y^{\prime } x +\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}y^{\prime } x +\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1549

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

[_linear]

1550

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1551

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1553

\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{4}} \]

[_linear]

1554

\[ {}y^{\prime } x +\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}2 y+y^{\prime } x = \frac {2}{x^{2}}+1 \]

[_linear]

1556

\[ {}y^{\prime }+\tan \left (x \right ) y = \cos \left (x \right ) \]

[_linear]

1557

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {\sin \left (x \right )}{x +1} \]

[_linear]

1558

\[ {}\left (x -2\right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (x -2\right )^{3} \]

[_linear]

1559

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

[_linear]

1560

\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1563

\[ {}y^{\prime } x +3 y = \frac {2}{x \left (x^{2}+1\right )} \]
i.c.

[_linear]

1564

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1566

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{2}} \]
i.c.

[_linear]

1567

\[ {}2 y+y^{\prime } x = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}y^{\prime } x -2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1570

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \sec \left (x \right )^{2}}{\left (x -1\right )^{3}} \]
i.c.

[_linear]

1571

\[ {}\left (x +2\right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (x +2\right )^{3}} \]
i.c.

[_linear]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}y^{\prime } x -2 y = -1 \]
i.c.

[_separable]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1575

\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (-1+y\right ) \left (-2+y\right ) \]

[_separable]

1586

\[ {}\left (-1+y\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (-1+y\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}x +y y^{\prime } = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (x -2\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1604

\[ {}y^{\prime }+y = \frac {2 x \,{\mathrm e}^{-x}}{1+y \,{\mathrm e}^{x}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

1605

\[ {}y^{\prime } x -2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1606

\[ {}y^{\prime }-y = \frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1607

\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1613

\[ {}y^{\prime } = 2 x y \]

[_separable]

1617

\[ {}y^{\prime } = x \left (y^{2}-1\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1622

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]
i.c.

[_separable]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1656

\[ {}\left (-y+y^{\prime } x \right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \]

[[_homogeneous, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1676

\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 x y+2}{x^{2} \left (2 x y+3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1682

\[ {}14 y^{3} x^{2}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1683

\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 x y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

1686

\[ {}-2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 y \cos \left (x \right )+9 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1688

\[ {}3 x^{2}+2 x y+4 y^{2}+\left (x^{2}+8 x y+18 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1693

\[ {}{\mathrm e}^{x} \left (x^{2} y^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

1694

\[ {}x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1695

\[ {}{\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1697

\[ {}4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1698

\[ {}-4 y \cos \left (x \right )+4 \sin \left (x \right ) \cos \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left ({\mathrm e}^{x}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1700

\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \]
i.c.

[_linear]

1701

\[ {}\left (2 x -1\right ) \left (-1+y\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1703

\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

[_exact, _Bernoulli]

1704

\[ {}x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1705

\[ {}3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1706

\[ {}x^{3} y^{4}+2 x +\left (x^{4} y^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1708

\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1709

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1710

\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]
i.c.

[[_Abel, ‘2nd type‘, ‘class B‘]]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1716

\[ {}5 x y+2 y+5+2 y^{\prime } x = 0 \]

[_linear]

1717

\[ {}x y+x +2 y+1+\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1719

\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1720

\[ {}y^{2}+\left (x y^{2}+6 x y+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1721

\[ {}12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1724

\[ {}\cos \left (x \right ) \cos \left (y\right )+\left (\sin \left (x \right ) \cos \left (y\right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1725

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 x^{2} y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

[_rational]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_separable]

1730

\[ {}a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

[_linear]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

1733

\[ {}x^{4} y^{3}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1734

\[ {}3 x y+2 y^{2}+y+\left (x^{2}+2 x y+x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1735

\[ {}12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 x y+7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2301

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2302

\[ {}y^{\prime }+y = t \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

2303

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2305

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2309

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2310

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2311

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2312

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2338

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2339

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2340

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2343

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2344

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2345

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2475

\[ {}y^{\prime }+y = t \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2483

\[ {}t y+y^{\prime } = 1+t \]
i.c.

[_linear]

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2485

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (1+t \right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2510

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2511

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2512

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2516

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2517

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2844

\[ {}y+y^{\prime } x = 0 \]

[_separable]

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2849

\[ {}y^{\prime } \tan \left (x \right )-y = 1 \]

[_separable]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

2853

\[ {}y+y^{\prime } x = y^{2} \]

[_separable]

2856

\[ {}y+y^{\prime } x = x y \left (y^{\prime }-1\right ) \]

[_separable]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

[_separable]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2862

\[ {}2 y+y^{\prime } x = 0 \]
i.c.

[_separable]

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2871

\[ {}x +y = y^{\prime } x \]

[_linear]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2878

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2880

\[ {}y+y^{\prime } x = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2881

\[ {}x +y+y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2885

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2898

\[ {}x -y+\left (-x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2915

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2916

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2917

\[ {}x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2918

\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2919

\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2920

\[ {}y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

[_exact]

2921

\[ {}\frac {2 x y-1}{y}+\frac {\left (x +3 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2922

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2923

\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2926

\[ {}\frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2927

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2928

\[ {}y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

2929

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2930

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2931

\[ {}2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0 \]

[_exact]

2932

\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_exact]

2933

\[ {}y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0 \]

[_exact]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2936

\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \]

[_exact]

2937

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

2938

\[ {}x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

[_separable]

2941

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2942

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2943

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2944

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2946

\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2948

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2949

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

2950

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2951

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2952

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2953

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2954

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2955

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2958

\[ {}2 y+y^{\prime } x = x^{2} \]

[_linear]

2959

\[ {}y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_linear]

2960

\[ {}y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2961

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

2962

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2963

\[ {}y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y} \]

[_linear]

2964

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2965

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2966

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

2967

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2968

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2969

\[ {}x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \]

[_linear]

2970

\[ {}\left (x +1\right ) y^{\prime }+2 y = \frac {{\mathrm e}^{x}}{x +1} \]

[_linear]

2971

\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2972

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2973

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

[_linear]

2974

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

[_linear]

2975

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2976

\[ {}y^{2}+1+\left (2 x y-y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2977

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

[_linear]

2978

\[ {}y+y^{3}+4 \left (x y^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2979

\[ {}2 y-x y-3+y^{\prime } x = 0 \]
i.c.

[_linear]

2980

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2981

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]
i.c.

[_linear]

2982

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

2983

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

2984

\[ {}\cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

[‘y=_G(x,y’)‘]

2985

\[ {}\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

[‘y=_G(x,y’)‘]

2986

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2988

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2989

\[ {}x^{2} y^{\prime }+y^{2} = x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2990

\[ {}\csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

2991

\[ {}y^{\prime }-x y = \frac {x}{y} \]

[_separable]

2992

\[ {}y+y^{\prime } x = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2993

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2995

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

2996

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

2997

\[ {}\left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

3004

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

3006

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3007

\[ {}x \ln \left (x \right ) y^{\prime }+y-x = 0 \]

[_linear]

3009

\[ {}2 x y-2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

3010

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

3011

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

3013

\[ {}y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3014

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3015

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

3016

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

3018

\[ {}2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3019

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3020

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

3022

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

3024

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

3026

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3027

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

[_linear]

3028

\[ {}3 x -6 = x y y^{\prime } \]

[_separable]

3029

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

3030

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3031

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

3033

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

3034

\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

3035

\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

3036

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3041

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3042

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

3043

\[ {}\frac {2 y^{3}-2 y^{3} x^{2}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-y^{3} x^{2}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \]
i.c.

[_exact]

3046

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

3047

\[ {}y+y^{\prime } x = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3049

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3050

\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3051

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

3052

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3055

\[ {}2 x y-2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

3057

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3169

\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

[_linear]

3285

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3334

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3403

\[ {}y^{\prime } = 2 \]

[_quadrature]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3409

\[ {}y^{\prime } = x y \]

[_separable]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3412

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3413

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3416

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

3417

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3418

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3440

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3441

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3442

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3443

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

3444

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right ) \]

[_linear]

3445

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3446

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )^{3} \]

[_linear]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3449

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3450

\[ {}y^{\prime } = -\tan \left (t \right ) y+\sec \left (t \right ) \]
i.c.

[_linear]

3451

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

3452

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3453

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3454

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]
i.c.

[_linear]

3455

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]
i.c.

[_linear]

3456

\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \]
i.c.

[_linear]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3458

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3460

\[ {}y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (1+y^{4}\right ) = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3461

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

3462

\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3463

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3464

\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \]

[_linear]

3465

\[ {}\left (x +y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

3466

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \]

[_rational, _Bernoulli]

3468

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3470

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3471

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3472

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3474

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3475

\[ {}y^{\prime }-\tan \left (x \right ) y = 1 \]
i.c.

[_linear]

3478

\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \]
i.c.

[_linear]

3480

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3481

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3482

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3515

\[ {}y^{\prime } = 2 x y \]

[_separable]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3518

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3519

\[ {}y-\left (x -2\right ) y^{\prime } = 0 \]

[_separable]

3520

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3521

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3522

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3523

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3524

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \]

[_linear]

3525

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3526

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3527

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3528

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3530

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3531

\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \]

[_linear]

3532

\[ {}y^{\prime }+2 x y = 2 x^{3} \]

[_linear]

3533

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3534

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3535

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

3536

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

3537

\[ {}y^{\prime }-\tan \left (x \right ) y = 8 \sin \left (x \right )^{3} \]

[_linear]

3538

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

3539

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3540

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

3541

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3542

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3543

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3544

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3546

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3550

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3555

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3577

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

3578

\[ {}y^{\prime } = \frac {1-y^{2}}{2 x y+2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3579

\[ {}y^{\prime } = \frac {\left (1-y \,{\mathrm e}^{x y}\right ) {\mathrm e}^{-x y}}{x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3580

\[ {}y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \]

[‘y=_G(x,y’)‘]

3581

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

3582

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3583

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3586

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

3593

\[ {}y^{\prime } = 2 x y \]

[_separable]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3596

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3597

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3598

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

3599

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

3600

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3606

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3620

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3626

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

3627

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3628

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3632

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

3633

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3634

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

3635

\[ {}-y+y^{\prime } x = x^{2} \ln \left (x \right ) \]

[_linear]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3643

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3648

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3652

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3657

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3668

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3675

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

3685

\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact]

3686

\[ {}y+3 x^{2}+y^{\prime } x = 0 \]

[_linear]

3687

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3688

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

3689

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3690

\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3691

\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

3692

\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3693

\[ {}2 \,{\mathrm e}^{2 x} y^{2}+3 x^{2}+2 \,{\mathrm e}^{2 x} y y^{\prime } = 0 \]

[_exact, _Bernoulli]

3694

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3695

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

4077

\[ {}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4078

\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4080

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4081

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4084

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4091

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

4092

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

4093

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

4094

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4097

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4100

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

4101

\[ {}y^{\prime }-\tan \left (x \right ) y = x \]
i.c.

[_linear]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4104

\[ {}y^{\prime } x = x +y \]
i.c.

[_linear]

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

4107

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

4109

\[ {}2 y+y^{\prime } x = \left (3 x +2\right ) {\mathrm e}^{3 x} \]
i.c.

[_linear]

4110

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

4116

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]
i.c.

[_linear]

4117

\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]
i.c.

[_exact, _rational]

4190

\[ {}y y^{\prime } = x \]

[_separable]

4191

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

4192

\[ {}y^{\prime }+y \cot \left (x \right ) = x \]

[_linear]

4193

\[ {}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right ) \]

[_linear]

4194

\[ {}y^{\prime }+\tan \left (x \right ) y = \cot \left (x \right ) \]

[_linear]

4195

\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

[_linear]

4196

\[ {}y+y^{\prime } x = x \]

[_linear]

4197

\[ {}-y+y^{\prime } x = x^{3} \]

[_linear]

4198

\[ {}y^{\prime } x +n y = x^{n} \]

[_linear]

4199

\[ {}y^{\prime } x -n y = x^{n} \]

[_linear]

4200

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

4201

\[ {}\cot \left (x \right ) y^{\prime }+y = x \]

[_linear]

4202

\[ {}\cot \left (x \right ) y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

4203

\[ {}y^{\prime } \tan \left (x \right )+y = \cot \left (x \right ) \]

[_linear]

4204

\[ {}y^{\prime } \tan \left (x \right ) = y-\cos \left (x \right ) \]

[_linear]

4205

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

4206

\[ {}\cos \left (x \right ) y^{\prime }+y = \sin \left (2 x \right ) \]

[_linear]

4207

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

4208

\[ {}y^{\prime } \sin \left (x \right )+y = \sin \left (2 x \right ) \]

[_linear]

4209

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \]

[_linear]

4210

\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \]

[_linear]

4211

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \]

[_linear]

4212

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \]

[_linear]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4217

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

4218

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

4219

\[ {}y^{\prime } x = y \]

[_separable]

4220

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

4221

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

4222

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

4223

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]
i.c.

[_separable]

4224

\[ {}y^{\prime }+2 x y = 0 \]
i.c.

[_separable]

4225

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4227

\[ {}y^{\prime }-2 x y = 2 x \]
i.c.

[_separable]

4228

\[ {}y^{\prime } x = x y+y \]
i.c.

[_separable]

4229

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4230

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

4231

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

4232

\[ {}2 y^{\prime } x = 1-y^{2} \]
i.c.

[_separable]

4233

\[ {}\left (1-x \right ) y^{\prime } = x y \]

[_separable]

4234

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4236

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

4237

\[ {}{\mathrm e}^{2 x} y y^{\prime }+2 x = 0 \]
i.c.

[_separable]

4238

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

4239

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4240

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4241

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4242

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4244

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4250

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4251

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4252

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4255

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4256

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

4257

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4258

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4259

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4260

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

4261

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4262

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4263

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4264

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4265

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4266

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4267

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4269

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

4270

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

4271

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = \cot \left (x \right ) \]

[_linear]

4272

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4273

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

4274

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

4275

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4279

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

4280

\[ {}y+y^{\prime } x = x \cos \left (x \right ) \]

[_linear]

4281

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4282

\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4283

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

4284

\[ {}y+y^{\prime } x = x^{2} \cos \left (x \right ) \]

[_linear]

4286

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

4287

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

4288

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4289

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

4290

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4291

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 4 x^{3} \]

[_linear]

4292

\[ {}{\mathrm e}^{x} \sin \left (y\right )-y \sin \left (x y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (x y\right )\right ) y^{\prime } = 0 \]

[_exact]

4293

\[ {}\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 2 x y-{\mathrm e}^{y}-x \]

[_exact]

4294

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-{\mathrm e}^{y} y\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

4295

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

4297

\[ {}\ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0 \]

[_linear]

4298

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]
i.c.

[_exact]

4299

\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \]

[_exact]

4300

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4301

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4306

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4308

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \]

[_separable]

4312

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4317

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4318

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4323

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4326

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

4327

\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4328

\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 y-2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4329

\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4330

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4331

\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

4332

\[ {}3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 x y-y \sin \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

4334

\[ {}x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4335

\[ {}y \left (2 x -y+2\right )+2 y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4336

\[ {}4 x y+3 y^{2}-x +x \left (x +2 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4337

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4338

\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4339

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4340

\[ {}3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \]

[_rational]

4341

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4342

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

[_rational, _Bernoulli]

4343

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

4344

\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4345

\[ {}2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4346

\[ {}x^{2}+y+y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4348

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4349

\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4351

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4352

\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4353

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4362

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4363

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

4364

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4365

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4366

\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4368

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

4373

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4376

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4396

\[ {}x y^{2} \left (y+y^{\prime } x \right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4398

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

4400

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

4401

\[ {}2 \sqrt {x y}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4403

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

4404

\[ {}y-1-x y+y^{\prime } x = 0 \]

[_linear]

4406

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4408

\[ {}2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4411

\[ {}{\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

[_Bernoulli]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

4415

\[ {}y+3 x^{4} y^{2}+\left (x +2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_rational]

4417

\[ {}2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

4418

\[ {}\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4419

\[ {}y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4421

\[ {}2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4424

\[ {}y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4425

\[ {}x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4427

\[ {}y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4428

\[ {}y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4430

\[ {}2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4431

\[ {}2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4437

\[ {}y \sin \left (x \right )+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

4440

\[ {}\left (1+\cos \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) = 0 \]

[_linear]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4442

\[ {}2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-x^{2} y^{2}-3 x \right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

4443

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4608

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4609

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

4610

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

[[_linear, ‘class A‘]]

4611

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4612

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4613

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4614

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4615

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4616

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

[_linear]

4617

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4618

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4619

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )+y \cos \left (x \right ) \]

[_linear]

4620

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

[_linear]

4621

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4622

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

[_linear]

4623

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4624

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4625

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4626

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

[_linear]

4627

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

[_linear]

4629

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

[_linear]

4630

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

[_linear]

4631

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

[_linear]

4632

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4633

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

[_linear]

4634

\[ {}y^{\prime } = \tan \left (x \right ) y \]

[_separable]

4635

\[ {}y^{\prime } = \cos \left (x \right )+\tan \left (x \right ) y \]

[_linear]

4636

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4637

\[ {}y^{\prime } = \sec \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4638

\[ {}y^{\prime } = \sin \left (2 x \right )+\tan \left (x \right ) y \]

[_linear]

4639

\[ {}y^{\prime } = \sin \left (2 x \right )-\tan \left (x \right ) y \]

[_linear]

4640

\[ {}y^{\prime } = \sin \left (x \right )+2 \tan \left (x \right ) y \]

[_linear]

4642

\[ {}y^{\prime } = \csc \left (x \right )+3 \tan \left (x \right ) y \]

[_linear]

4643

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4644

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

[_linear]

4645

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

[_linear]

4646

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

[_linear]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4671

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4679

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

[_linear]

4681

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

[_linear]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4692

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4709

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (y\right ) \]

[_separable]

4710

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4715

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4716

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4717

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4718

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4719

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4720

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4723

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4724

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4732

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4733

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4737

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4738

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

4742

\[ {}y^{\prime } x = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4743

\[ {}y^{\prime } x +x +y = 0 \]

[_linear]

4744

\[ {}y^{\prime } x +x^{2}-y = 0 \]

[_linear]

4745

\[ {}y^{\prime } x = x^{3}-y \]

[_linear]

4746

\[ {}y^{\prime } x = 1+x^{3}+y \]

[_linear]

4747

\[ {}y^{\prime } x = x^{m}+y \]

[_linear]

4748

\[ {}y^{\prime } x = x \sin \left (x \right )-y \]

[_linear]

4749

\[ {}y^{\prime } x = x^{2} \sin \left (x \right )+y \]

[_linear]

4750

\[ {}y^{\prime } x = x^{n} \ln \left (x \right )-y \]

[_linear]

4751

\[ {}y^{\prime } x = \sin \left (x \right )-2 y \]

[_linear]

4752

\[ {}y^{\prime } x = a y \]

[_separable]

4753

\[ {}y^{\prime } x = 1+x +a y \]

[_linear]

4754

\[ {}y^{\prime } x = a x +b y \]

[_linear]

4755

\[ {}y^{\prime } x = a \,x^{2}+b y \]

[_linear]

4756

\[ {}y^{\prime } x = a +b \,x^{n}+c y \]

[_linear]

4757

\[ {}y^{\prime } x +2+\left (3-x \right ) y = 0 \]

[_linear]

4758

\[ {}y^{\prime } x +x +\left (a x +2\right ) y = 0 \]

[_linear]

4759

\[ {}y^{\prime } x +\left (b x +a \right ) y = 0 \]

[_separable]

4760

\[ {}y^{\prime } x = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4761

\[ {}y^{\prime } x = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

4762

\[ {}y^{\prime } x +x +\left (-a \,x^{2}+2\right ) y = 0 \]

[_linear]

4764

\[ {}y^{\prime } x = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4766

\[ {}y^{\prime } x = a +b y^{2} \]

[_separable]

4772

\[ {}y^{\prime } x +\left (1-x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4773

\[ {}y^{\prime } x = \left (1-x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4774

\[ {}y^{\prime } x = \left (x y+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4777

\[ {}y^{\prime } x = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4785

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4786

\[ {}y^{\prime } x = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

4787

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4788

\[ {}y^{\prime } x +\left (1-x y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4789

\[ {}y+y^{\prime } x = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4792

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4793

\[ {}2 y+y^{\prime } x = \sqrt {1+y^{2}} \]

[_separable]

4799

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

4804

\[ {}y^{\prime } x +y+2 x \sec \left (x y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4809

\[ {}y^{\prime } x +\tan \left (y\right ) = 0 \]

[_separable]

4815

\[ {}y^{\prime } x = y \ln \left (y\right ) \]

[_separable]

4816

\[ {}y^{\prime } x = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4817

\[ {}y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4821

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

4822

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4823

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4829

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4830

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4831

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4833

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4836

\[ {}2 y^{\prime } x = 2 x^{3}-y \]

[_linear]

4838

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4841

\[ {}2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4842

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4844

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

[_linear]

4848

\[ {}3 y^{\prime } x = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

4849

\[ {}x^{2} y^{\prime } = a -y \]

[_separable]

4850

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

[_linear]

4851

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

[_linear]

4852

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

4853

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4855

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

[_linear]

4856

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \]

[_linear]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4877

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

[_linear]

4878

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = x y \]

[_linear]

4879

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-x y \]

[_linear]

4880

\[ {}\left (x^{2}+1\right ) y^{\prime }+a +x y = 0 \]

[_linear]

4881

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

4882

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

4884

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+x y = 0 \]

[_linear]

4885

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+x y = 0 \]

[_linear]

4886

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-x y \]

[_linear]

4887

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

[_linear]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

4889

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x -y\right ) \]

[_linear]

4890

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 x y \]

[_linear]

4891

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 x y \]

[_linear]

4892

\[ {}\left (x^{2}+1\right ) y^{\prime } = \tan \left (x \right )-2 x y \]

[_linear]

4893

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 x y \]

[_linear]

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4903

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \]

[_linear]

4905

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +x y \]

[_linear]

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4910

\[ {}x \left (1-x \right ) y^{\prime } = a +\left (x +1\right ) y \]

[_linear]

4911

\[ {}x \left (1-x \right ) y^{\prime } = 2 x y+2 \]

[_linear]

4912

\[ {}x \left (1-x \right ) y^{\prime } = 2 x y-2 \]

[_linear]

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (1-2 x \right ) y \]

[_separable]

4914

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4915

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4916

\[ {}x \left (1-x \right ) y^{\prime }+2-3 x y+y = 0 \]

[_linear]

4917

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4918

\[ {}\left (x -2\right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 x y = 0 \]

[_linear]

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4923

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4928

\[ {}2 x^{2} y^{\prime }+x \cot \left (x \right )-1+2 x^{2} y \cot \left (x \right ) = 0 \]

[_linear]

4929

\[ {}2 x^{2} y^{\prime }+1+2 x y-x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4931

\[ {}2 \left (-x^{2}+1\right ) y^{\prime } = \sqrt {-x^{2}+1}+\left (x +1\right ) y \]

[_linear]

4932

\[ {}x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y = 0 \]

[_linear]

4933

\[ {}x \left (1-2 x \right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4934

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y = 0 \]

[_linear]

4936

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4937

\[ {}4 \left (x^{2}+1\right ) y^{\prime }-4 x y-x^{2} = 0 \]

[_linear]

4940

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4943

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4944

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4946

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4953

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4954

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{2}+y \]

[_linear]

4955

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4956

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \]

[_linear]

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4959

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4960

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4961

\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \]

[_linear]

4962

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \]

[_linear]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4973

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \]

[_linear]

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4978

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4981

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4987

\[ {}\sqrt {x^{2}+1}\, y^{\prime } = 2 x -y \]

[_linear]

4990

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

[_linear]

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5003

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

5004

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5007

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

5009

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

5010

\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

5011

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

5012

\[ {}\left (\operatorname {a0} +\operatorname {a1} \sin \left (x \right )^{2}\right ) y^{\prime }+\operatorname {a2} x \left (\operatorname {a3} +\operatorname {a1} \sin \left (x \right )^{2}\right )+\operatorname {a1} y \sin \left (2 x \right ) = 0 \]

[_linear]

5013

\[ {}\left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[_linear]

5014

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (1+\ln \left (x \right )\right )-y \]

[_linear]

5015

\[ {}y y^{\prime }+x = 0 \]

[_separable]

5016

\[ {}y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

5019

\[ {}y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

[_separable]

5021

\[ {}y y^{\prime }+4 \left (x +1\right ) x +y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5022

\[ {}y y^{\prime } = a x +b y^{2} \]

[_rational, _Bernoulli]

5023

\[ {}y y^{\prime } = b \cos \left (x +c \right )+a y^{2} \]

[_Bernoulli]

5024

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

5025

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

5026

\[ {}y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

[_Bernoulli]

5027

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

5028

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

5031

\[ {}\left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

5032

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5033

\[ {}y^{\prime } \left (x -y\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5034

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5035

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5036

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

5037

\[ {}y^{\prime } \left (x -y\right ) = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5038

\[ {}\left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5041

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5044

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5046

\[ {}\left (3+2 x -y\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5048

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5050

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5055

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5056

\[ {}\left (x^{2}-y\right ) y^{\prime } = 4 x y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5057

\[ {}\left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y = 0 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

5058

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5059

\[ {}2 y y^{\prime } = x y^{2}+x^{3} \]

[_rational, _Bernoulli]

5060

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5061

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5062

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5063

\[ {}\left (1+x -2 y\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5066

\[ {}2 \left (x +y\right ) y^{\prime }+x^{2}+2 y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5067

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5071

\[ {}\left (x^{3}+2 y\right ) y^{\prime } = 3 x \left (2-x y\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5073

\[ {}\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5074

\[ {}3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

5075

\[ {}3 \left (2-y\right ) y^{\prime }+x y = 0 \]

[_separable]

5081

\[ {}\left (x +4 y\right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5083

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = 3+x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5084

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5094

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5098

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5099

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5100

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5101

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

5102

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5103

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5104

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5105

\[ {}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

5108

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

5109

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5110

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

5113

\[ {}\left (x y+1\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5114

\[ {}x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

5115

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5116

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5118

\[ {}\left (2+3 x -x y\right ) y^{\prime }+y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5121

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

5123

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5125

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5134

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

[_separable]

5135

\[ {}2 x y y^{\prime }+1-2 x^{3}-y^{2} = 0 \]

[_rational, _Bernoulli]

5136

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

5137

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5138

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5140

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

5141

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

5142

\[ {}\left (3-x +2 x y\right ) y^{\prime }+3 x^{2}-y+y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5143

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5145

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5146

\[ {}x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5147

\[ {}x \left (1-x -2 y\right ) y^{\prime }+\left (2 x +y+1\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5148

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5149

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

5151

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5152

\[ {}\left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5153

\[ {}3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right ) = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5154

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5156

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

5157

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5159

\[ {}\left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5161

\[ {}x \left (1-x y\right ) y^{\prime }+\left (x y+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5162

\[ {}x \left (2+x y\right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5163

\[ {}x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (x y+1\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5164

\[ {}x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5165

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5166

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5168

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

5169

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5170

\[ {}x \left (1-2 x y\right ) y^{\prime }+y \left (1+2 x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5171

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (2+3 x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5172

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (1+2 x y-x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5175

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5177

\[ {}\left (1-x^{3} y\right ) y^{\prime } = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5178

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5179

\[ {}x \left (3-2 x^{2} y\right ) y^{\prime } = 4 x -3 y+3 x^{2} y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5183

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5188

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

5189

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

5190

\[ {}\left (x +y^{2}\right ) y^{\prime }+y = b x +a \]

[_exact, _rational]

5191

\[ {}\left (x -y^{2}\right ) y^{\prime } = x^{2}-y \]

[_exact, _rational]

5192

\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5193

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5194

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5195

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5196

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5198

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5199

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 x y = 0 \]

[_exact, _rational]

5200

\[ {}\left (x +x^{2}+y^{2}\right ) y^{\prime } = y \]

[_rational]

5201

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5202

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

5203

\[ {}y \left (1+y\right ) y^{\prime } = \left (x +1\right ) x \]

[_separable]

5205

\[ {}\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5206

\[ {}\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5207

\[ {}\left (1+y+x y+y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5213

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5217

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

5218

\[ {}\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 x y = 0 \]

[_exact, _rational]

5220

\[ {}3 \left (x^{2}-y^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (x +1\right )-2 y^{3} = 0 \]

[‘y=_G(x,y’)‘]

5221

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5223

\[ {}\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2} = 0 \]

[_exact, _rational]

5224

\[ {}\left (x -6 y\right )^{2} y^{\prime }+a +2 x y-6 y^{2} = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5225

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5228

\[ {}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 y a x +b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5229

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

5232

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5233

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5236

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

5238

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5239

\[ {}x \left (x^{2}+y a x +y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5240

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5244

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5245

\[ {}\left (1-4 x +3 x y^{2}\right ) y^{\prime } = \left (2-y^{2}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5246

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

5247

\[ {}3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 x y-2 y^{3} = 0 \]

[_rational]

5249

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5250

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+x y-3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5251

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5252

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5253

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

5254

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5255

\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (x y+1\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5256

\[ {}x \left (1+x y^{2}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5257

\[ {}x \left (1+x y^{2}\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5259

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

5260

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

5261

\[ {}\left (1-x^{3}+6 x^{2} y^{2}\right ) y^{\prime } = \left (6+3 x y-4 y^{3}\right ) x \]

[_exact, _rational]

5262

\[ {}x \left (3+5 x -12 x y^{2}+4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 x y^{2}+6 x^{2} y\right ) y = 0 \]

[_exact, _rational]

5263

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

5264

\[ {}x \left (1-x y\right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5265

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5266

\[ {}\left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y \]

[_exact, _rational]

5267

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5269

\[ {}\left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+x y^{2} \]

[_exact, _rational]

5270

\[ {}\left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

[_rational]

5271

\[ {}\left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right ) \]

[_exact, _rational]

5272

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5275

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

5277

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5279

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5280

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5282

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5284

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5286

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5287

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5288

\[ {}x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (x -y\right ) y \]

[_rational]

5289

\[ {}\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5290

\[ {}x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0 \]

[_rational]

5292

\[ {}\left (2-10 y^{3} x^{2}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5293

\[ {}x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0 \]

[_rational]

5294

\[ {}x \left (1-2 y^{3} x^{2}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0 \]

[_rational]

5295

\[ {}x \left (1-x y\right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (x y+1\right ) \left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5296

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class G‘], _rational]

5297

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

5299

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

5300

\[ {}\left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5303

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5304

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5305

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class G‘], _rational]

5306

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5307

\[ {}x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0 \]

[_rational]

5311

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

5312

\[ {}y^{\prime } \sqrt {-y^{2}+b^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5324

\[ {}y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0 \]

unknown

5325

\[ {}\left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0 \]

[_exact]

5326

\[ {}\left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0 \]

[NONE]

5327

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

5328

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5329

\[ {}\left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \]

[_exact]

5330

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5331

\[ {}\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0 \]

[_exact]

5332

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5345

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

5359

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5360

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

5374

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

5386

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x = 0 \]

[_quadrature]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = \left (x +y\right ) x \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \left (x -y\right )-4 x y = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5410

\[ {}{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

5435

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5474

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5476

\[ {}x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right ) = 0 \]

[_separable]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5507

\[ {}x^{3} {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5512

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5521

\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \]

[[_1st_order, _with_linear_symmetries]]

5527

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

5529

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5539

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5564

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5565

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5570

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5594

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5689

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5692

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5695

\[ {}y+x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5699

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5700

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5712

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5714

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

5715

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5716

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5718

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

5721

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5722

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5723

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5724

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5725

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

5726

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5727

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

5728

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

5729

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

5731

\[ {}2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5732

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5737

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5738

\[ {}\left (x^{2} y^{2}+x y\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5739

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5740

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5741

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5742

\[ {}2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5743

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5771

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5773

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5781

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5799

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5800

\[ {}\frac {1+2 x y}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5801

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5802

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5803

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5804

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5805

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = 0 \]

[_exact]

5806

\[ {}2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5807

\[ {}x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5808

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5809

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

5810

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5811

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

5812

\[ {}y^{2}+y-y^{\prime } x = 0 \]

[_separable]

5813

\[ {}y \sec \left (x \right )+y^{\prime } \sin \left (x \right ) = 0 \]

[_separable]

5814

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5815

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

5816

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5817

\[ {}3 y-y^{\prime } x = 0 \]

[_separable]

5818

\[ {}y-3 y^{\prime } x = 0 \]

[_separable]

5820

\[ {}2 x y+x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5821

\[ {}x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

5822

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

5823

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5824

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5825

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5826

\[ {}x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

[_rational]

5827

\[ {}y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5828

\[ {}\arctan \left (x y\right )+\frac {x y-2 x y^{2}}{1+x^{2} y^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+x^{2} y^{2}} = 0 \]

[_exact]

5829

\[ {}{\mathrm e}^{x} \left (x +1\right )+\left ({\mathrm e}^{y} y-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5830

\[ {}\frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5831

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5832

\[ {}\left (2 x +y+1\right ) y-x \left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5833

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5834

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5835

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5836

\[ {}y-\left (x +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_rational]

5837

\[ {}2 x y+\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5838

\[ {}2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5839

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5841

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5842

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5843

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

[_linear]

5844

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5847

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

[_linear]

5848

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5849

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5850

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

5851

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

[_linear]

5852

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5853

\[ {}y^{\prime } x +y = x \sin \left (x \right ) \]

[_linear]

5854

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

5855

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5856

\[ {}y^{\prime } x -y \left (-1+2 y \ln \left (x \right )\right ) = 0 \]

[_Bernoulli]

5858

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5861

\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5864

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5866

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

5867

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \]

[‘y=_G(x,y’)‘]

5869

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5870

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5873

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5874

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5877

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5879

\[ {}y^{\prime } x +y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5880

\[ {}2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0 \]

[_separable]

5881

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5885

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

[[_linear, ‘class A‘]]

5886

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

5887

\[ {}\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5889

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

[_linear]

5890

\[ {}y^{\prime } x -y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

5891

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5892

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

5894

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5895

\[ {}\left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5897

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

5898

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5900

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5901

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0 \]

[_exact, _rational]

5902

\[ {}y^{\prime } \cos \left (x \right )+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

5903

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5904

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5905

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5909

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5910

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5911

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5913

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

[_rational]

5914

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

6020

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

6025

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

6029

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

6031

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

6032

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6035

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6093

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6096

\[ {}1+y^{2}+x y y^{\prime } = 0 \]
i.c.

[_separable]

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

6099

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6122

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

6123

\[ {}y^{\prime } \left (x -y\right )+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6124

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

unknown

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6128

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6131

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

6133

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6208

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

[_linear]

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

6212

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6214

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6217

\[ {}u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

6218

\[ {}y+2 x -y^{\prime } x = 0 \]

[_linear]

6224

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6225

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6226

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

6230

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6233

\[ {}-y+y^{\prime } x = x^{2} \]
i.c.

[_linear]

6237

\[ {}y^{\prime } x = x y+y \]

[_separable]

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6241

\[ {}y^{\prime } x = y \]

[_separable]

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

6262

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

6294

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

6297

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

6299

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

6300

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

6302

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

6303

\[ {}2 y+y^{\prime } x = \frac {1}{x^{3}} \]

[_linear]

6304

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

6307

\[ {}y^{\prime } x +3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

6309

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

6312

\[ {}t^{2} x^{\prime }+3 t x = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

6314

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

6315

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

6320

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

6323

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

6325

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

[_exact]

6326

\[ {}y^{\prime }+x y = 0 \]

[_separable]

6327

\[ {}y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6328

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

6329

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

6330

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

6331

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6332

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

6333

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

6334

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

6335

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

6336

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

6337

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6338

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

6339

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

6340

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

6341

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

[_exact, _rational]

6342

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

6343

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6344

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6398

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

6399

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]
i.c.

[_linear]

6400

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

6401

\[ {}x^{2} y^{\prime }+2 x y = \sinh \left (x \right ) \]
i.c.

[_linear]

6402

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

6403

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

6404

\[ {}\left (x^{2}+1\right ) y^{\prime } = x y+1 \]

[_linear]

6405

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6415

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

6416

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

6418

\[ {}y^{\prime } x = x^{2}+2 x -3 \]

[_quadrature]

6420

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

6421

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

6422

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6423

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

6425

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

6426

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

6427

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

6428

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6430

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

6431

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6432

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

6433

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6435

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6436

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6437

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6439

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6446

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6449

\[ {}\left (x y+1\right ) y+x \left (1+x y+x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6455

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \]

[_linear]

6459

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6460

\[ {}y^{\prime }-\tan \left (x \right ) y = \cos \left (x \right )-2 x \sin \left (x \right ) \]
i.c.

[_linear]

6461

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6462

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (1+y\right ) \]

[_separable]

6463

\[ {}2 y+y^{\prime } x = 3 x -1 \]
i.c.

[_linear]

6464

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

6466

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]
i.c.

[_linear]

6467

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6468

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6469

\[ {}y^{\prime } = \frac {1+x -2 y}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6470

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6471

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]
i.c.

[_linear]

6472

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6473

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

[_linear]

6474

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = \left (x^{2}+1\right )^{{3}/{2}} \]

[_linear]

6475

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6476

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6477

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

6478

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6515

\[ {}y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

6516

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6517

\[ {}y^{\prime }-5 y = x^{2} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x} \]

[[_linear, ‘class A‘]]

6523

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6524

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

[[_linear, ‘class A‘]]

6525

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_linear, ‘class A‘]]

6533

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6542

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6569

\[ {}y^{\prime } x = 2 y \]

[_separable]

6570

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6572

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6579

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

6580

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6581

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6582

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6583

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6584

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6586

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6588

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6589

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

6590

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6594

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6595

\[ {}y \left (1+2 x y\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6596

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6597

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6599

\[ {}2 y+y^{\prime } x = 0 \]
i.c.

[_separable]

6600

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6601

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6605

\[ {}x^{2}-y-y^{\prime } x = 0 \]

[_linear]

6606

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6607

\[ {}x +y \cos \left (x \right )+y^{\prime } \sin \left (x \right ) = 0 \]

[_linear]

6608

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6609

\[ {}4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

6610

\[ {}2 u^{2}+2 v u +\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6611

\[ {}x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \]

[_exact]

6612

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6613

\[ {}y^{2}-\frac {y}{\left (x +y\right ) x}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime } = 0 \]

[_exact, _rational]

6614

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

[_exact]

6615

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6616

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6618

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6620

\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6621

\[ {}2 y-3 x +y^{\prime } x = 0 \]

[_linear]

6622

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6623

\[ {}-y-3 x^{2} \left (x^{2}+y^{2}\right )+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6624

\[ {}y-\ln \left (x \right )-y^{\prime } x = 0 \]

[_linear]

6625

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6626

\[ {}x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6627

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6628

\[ {}2 y-3 x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6629

\[ {}y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6630

\[ {}y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

[_rational]

6631

\[ {}-y-x^{2} {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6633

\[ {}2 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

6634

\[ {}y+\left (-x +y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6635

\[ {}3 y^{3}-x y-\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6636

\[ {}3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6637

\[ {}y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6638

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6639

\[ {}y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6640

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

6641

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

6642

\[ {}y^{\prime }-y = x y \]

[_separable]

6643

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

6644

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

6646

\[ {}y+\left (x y+x -3 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6647

\[ {}\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6648

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6649

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

6650

\[ {}y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6651

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6653

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

6654

\[ {}y^{\prime } x = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

6655

\[ {}2+y^{2}-\left (x y+2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6656

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6658

\[ {}1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6659

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6660

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

6661

\[ {}x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

[‘y=_G(x,y’)‘]

6663

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

6665

\[ {}y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

6666

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6667

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

6794

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

6842

\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \]

[_linear]

6885

\[ {}y^{2}-1+y^{\prime } x = 0 \]

[_separable]

6886

\[ {}2 y^{\prime }+y = 0 \]

[_quadrature]

6887

\[ {}y^{\prime }+20 y = 24 \]

[_quadrature]

6890

\[ {}\left (y-x \right ) y^{\prime } = y-x \]

[_quadrature]

6891

\[ {}y^{\prime } = 25+y^{2} \]

[_quadrature]

6892

\[ {}y^{\prime } = 2 x y^{2} \]

[_separable]

6893

\[ {}2 y^{\prime } = y^{3} \cos \left (x \right ) \]

[_separable]

6894

\[ {}x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

[_quadrature]

6895

\[ {}2 x y+\left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6896

\[ {}p^{\prime } = p \left (1-p\right ) \]

[_quadrature]

6897

\[ {}y^{\prime }+4 x y = 8 x^{3} \]

[_linear]

6900

\[ {}y^{\prime } x -3 x y = 1 \]

[[_linear, ‘class A‘]]

6901

\[ {}2 y^{\prime } x -y = 2 x \cos \left (x \right ) \]

[_linear]

6902

\[ {}x^{2} y^{\prime }+x y = 10 \sin \left (x \right ) \]

[_linear]

6903

\[ {}y^{\prime }+2 x y = 1 \]

[_linear]

6904

\[ {}y^{\prime } x -2 y = 0 \]

[_separable]

6905

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

6906

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

6907

\[ {}5 y^{\prime } = 2 y \]

[_quadrature]

6914

\[ {}3 y^{\prime } x +5 y = 10 \]

[_separable]

6915

\[ {}y^{\prime } = y^{2}+2 y-3 \]

[_quadrature]

6916

\[ {}\left (-1+y\right ) y^{\prime } = 1 \]

[_quadrature]

6920

\[ {}y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

[_quadrature]

6924

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

6926

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

6929

\[ {}y^{\prime } = 5-y \]

[_quadrature]

6930

\[ {}y^{\prime } = y^{2}+4 \]

[_quadrature]

6933

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6934

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6935

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6936

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6937

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6938

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6947

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6948

\[ {}y^{\prime } x = 2 y \]
i.c.

[_separable]

6949

\[ {}y^{\prime } = y^{{2}/{3}} \]

[_quadrature]

6950

\[ {}y^{\prime } = \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

6951

\[ {}y^{\prime } x = y \]

[_separable]

6952

\[ {}y^{\prime }-y = x \]

[[_linear, ‘class A‘]]

6953

\[ {}\left (4-y^{2}\right ) y^{\prime } = x^{2} \]

[_separable]

6954

\[ {}\left (y^{3}+1\right ) y^{\prime } = x^{2} \]

[_separable]

6956

\[ {}\left (y-x \right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6957

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6958

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6959

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6960

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6961

\[ {}y^{\prime } x = y \]
i.c.

[_separable]

6962

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6963

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6964

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6965

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6966

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6967

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6968

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6969

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6970

\[ {}y y^{\prime } = 3 x \]
i.c.

[_separable]

6977

\[ {}y^{\prime } = x -2 y \]
i.c.

[[_linear, ‘class A‘]]

6980

\[ {}y^{\prime }+2 y = 3 x -6 \]

[[_linear, ‘class A‘]]

6981

\[ {}y^{\prime } = x \sqrt {y} \]
i.c.

[_separable]

6982

\[ {}y^{\prime } x = 2 x \]

[_quadrature]

6983

\[ {}y^{\prime } = 2 \]

[_quadrature]

6984

\[ {}y^{\prime } = 2 y-4 \]

[_quadrature]

6985

\[ {}y^{\prime } x = y \]

[_separable]

6989

\[ {}y^{\prime } = y \left (y-3\right ) \]

[_quadrature]

6990

\[ {}3 y^{\prime } x -2 y = 0 \]

[_separable]

6991

\[ {}\left (2 y-2\right ) y^{\prime } = 2 x -1 \]
i.c.

[_separable]

6992

\[ {}y^{\prime } x +y = 2 x \]
i.c.

[_linear]

6994

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7000

\[ {}y^{\prime }+y \sin \left (x \right ) = x \]

[_linear]

7001

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x} \]

[_linear]

7004

\[ {}y^{\prime } x +y = \frac {1}{y^{2}} \]

[_separable]

7007

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7009

\[ {}y^{\prime }+2 y = 3 x \]

[[_linear, ‘class A‘]]

7022

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

7023

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

7024

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

7025

\[ {}y^{\prime } = 1-x y \]
i.c.

[_linear]

7026

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7027

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7028

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7029

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]
i.c.

[_separable]

7030

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7031

\[ {}y^{\prime } = x \]
i.c.

[_quadrature]

7032

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

7033

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

7034

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7035

\[ {}y y^{\prime } = -x \]
i.c.

[_separable]

7036

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7037

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7038

\[ {}y^{\prime } = \frac {x^{2}}{5}+y \]
i.c.

[[_linear, ‘class A‘]]

7039

\[ {}y^{\prime } = \frac {x^{2}}{5}+y \]
i.c.

[[_linear, ‘class A‘]]

7040

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7041

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7042

\[ {}y^{\prime } = y-\cos \left (\frac {\pi x}{2}\right ) \]
i.c.

[[_linear, ‘class A‘]]

7043

\[ {}y^{\prime } = y-\cos \left (\frac {\pi x}{2}\right ) \]
i.c.

[[_linear, ‘class A‘]]

7044

\[ {}y^{\prime } = 1-\frac {y}{x} \]
i.c.

[_linear]

7045

\[ {}y^{\prime } = 1-\frac {y}{x} \]
i.c.

[_linear]

7046

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

7049

\[ {}y^{\prime } = x^{2}-2 y \]

[[_linear, ‘class A‘]]

7050

\[ {}y^{\prime } = y-y^{3} \]

[_quadrature]

7051

\[ {}y^{\prime } = y^{2}-y^{4} \]

[_quadrature]

7052

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

7053

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

7054

\[ {}y^{\prime } = \left (y-2\right )^{4} \]

[_quadrature]

7055

\[ {}y^{\prime } = 10+3 y-y^{2} \]

[_quadrature]

7056

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

7057

\[ {}y^{\prime } = y \left (2-y\right ) \left (4-y\right ) \]

[_quadrature]

7058

\[ {}y^{\prime } = y \ln \left (y+2\right ) \]

[_quadrature]

7059

\[ {}y^{\prime } = \left (y \,{\mathrm e}^{y}-9 y\right ) {\mathrm e}^{-y} \]

[_quadrature]

7060

\[ {}y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right ) \]

[_quadrature]

7061

\[ {}y^{\prime } = y^{2}-y-6 \]

[_quadrature]

7062

\[ {}m v^{\prime } = m g -k v^{2} \]

[_quadrature]

7063

\[ {}y^{\prime } = \sin \left (5 x \right ) \]

[_quadrature]

7064

\[ {}y^{\prime } = \left (x +1\right )^{2} \]

[_quadrature]

7065

\[ {}1+{\mathrm e}^{3 x} y^{\prime } = 0 \]

[_quadrature]

7066

\[ {}y^{\prime }-\left (-1+y\right )^{2} = 0 \]

[_quadrature]

7067

\[ {}y^{\prime } x = 4 y \]

[_separable]

7068

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7072

\[ {}y^{\prime } = \frac {\left (3+2 y\right )^{2}}{\left (4 x +5\right )^{2}} \]

[_separable]

7074

\[ {}\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime } = 0 \]

[_separable]

7077

\[ {}s^{\prime } = k s \]

[_quadrature]

7078

\[ {}q^{\prime } = k \left (q-70\right ) \]

[_quadrature]

7079

\[ {}p^{\prime } = p-p^{2} \]

[_quadrature]

7080

\[ {}n^{\prime }+n = n t \,{\mathrm e}^{t +2} \]

[_separable]

7081

\[ {}y^{\prime } = \frac {x y+3 x -y-3}{x y-2 x +4 y-8} \]

[_separable]

7082

\[ {}y^{\prime } = \frac {x y+2 y-x -2}{x y-3 y+x -3} \]

[_separable]

7083

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

[_separable]

7085

\[ {}x^{\prime } = 4 x^{2}+4 \]
i.c.

[_quadrature]

7086

\[ {}y^{\prime } = \frac {y^{2}-1}{x^{2}-1} \]
i.c.

[_separable]

7087

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

7088

\[ {}y^{\prime }+2 y = 1 \]
i.c.

[_quadrature]

7091

\[ {}y^{\prime } = -y \ln \left (y\right ) \]
i.c.

[_quadrature]

7092

\[ {}x \sinh \left (y\right ) y^{\prime } = \cosh \left (y\right ) \]
i.c.

[_separable]

7093

\[ {}y^{\prime } = y \,{\mathrm e}^{-x^{2}} \]
i.c.

[_separable]

7094

\[ {}y^{\prime } = y^{2} \sin \left (x^{2}\right ) \]
i.c.

[_separable]

7095

\[ {}y^{\prime } = \left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \]
i.c.

[_separable]

7096

\[ {}y^{\prime } = \frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \]
i.c.

[_separable]

7097

\[ {}y^{\prime } = \frac {3 x +1}{2 y} \]
i.c.

[_separable]

7098

\[ {}\left (2 y-2\right ) y^{\prime } = 3 x^{2}+4 x +2 \]
i.c.

[_separable]

7100

\[ {}\sin \left (x \right )+y y^{\prime } = 0 \]
i.c.

[_separable]

7103

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7105

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7106

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7107

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

7108

\[ {}2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7109

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7110

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7111

\[ {}y^{\prime } = \left (-1+y\right )^{2}+\frac {1}{100} \]
i.c.

[_quadrature]

7112

\[ {}y^{\prime } = \left (-1+y\right )^{2}-\frac {1}{100} \]
i.c.

[_quadrature]

7113

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7114

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7115

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7116

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7117

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7118

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7119

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7120

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7121

\[ {}y^{\prime } = \frac {1}{1+\sin \left (x \right )} \]

[_quadrature]

7122

\[ {}y^{\prime } = \frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \]

[_separable]

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

[_quadrature]

7125

\[ {}y^{\prime } = \frac {{\mathrm e}^{\sqrt {x}}}{y} \]
i.c.

[_separable]

7126

\[ {}y^{\prime } = \frac {x \arctan \left (x \right )}{y} \]
i.c.

[_separable]

7127

\[ {}y^{\prime } = -\frac {x}{y} \]
i.c.

[_separable]

7128

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

7129

\[ {}y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]
i.c.

[_quadrature]

7130

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

7131

\[ {}y^{\prime } = y+\frac {y}{x \ln \left (x \right )} \]
i.c.

[_separable]

7133

\[ {}y^{\prime } = \sqrt {\frac {1-y^{2}}{-x^{2}+1}} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]
i.c.

[_quadrature]

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]
i.c.

[_quadrature]

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]
i.c.

[_quadrature]

7138

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7139

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7140

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7141

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7142

\[ {}\left (2 y+2\right ) y^{\prime }-4 x^{3}-6 x = 0 \]
i.c.

[_separable]

7143

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]
i.c.

[_separable]

7144

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]
i.c.

[_separable]

7145

\[ {}y^{\prime } = 5 y \]

[_quadrature]

7146

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

7147

\[ {}y^{\prime }+y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

7148

\[ {}3 y^{\prime }+12 y = 4 \]

[_quadrature]

7149

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]

[_separable]

7150

\[ {}y^{\prime }+2 x y = x^{3} \]

[_linear]

7151

\[ {}x^{2} y^{\prime }+x y = 1 \]

[_linear]

7152

\[ {}y^{\prime } = 2 y+x^{2}+5 \]

[[_linear, ‘class A‘]]

7153

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

7154

\[ {}2 y+y^{\prime } x = 3 \]

[_separable]

7155

\[ {}4 y+y^{\prime } x = x^{3}-x \]

[_linear]

7156

\[ {}\left (x +1\right ) y^{\prime }-x y = x^{2}+x \]

[_linear]

7157

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = {\mathrm e}^{x} \]

[_linear]

7158

\[ {}y^{\prime } x +\left (x +1\right ) y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[_linear]

7159

\[ {}y-4 \left (x +y^{6}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7160

\[ {}y = \left (y \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7161

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]

[_linear]

7162

\[ {}\cos \left (x \right )^{2} \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{3} y = 1 \]

[_linear]

7163

\[ {}\left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 2 x \,{\mathrm e}^{-x} \]

[_linear]

7164

\[ {}\left (x +2\right )^{2} y^{\prime } = 5-8 y-4 x y \]

[_linear]

7165

\[ {}r^{\prime }+r \sec \left (t \right ) = \cos \left (t \right ) \]

[_linear]

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

[_separable]

7167

\[ {}y^{\prime } x +\left (3 x +1\right ) y = {\mathrm e}^{-3 x} \]

[_linear]

7168

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y = \left (x +1\right )^{2} \]

[_linear]

7169

\[ {}y^{\prime } = x +5 y \]
i.c.

[[_linear, ‘class A‘]]

7170

\[ {}y^{\prime } = 2 x -3 y \]
i.c.

[[_linear, ‘class A‘]]

7171

\[ {}y^{\prime } x +y = {\mathrm e}^{x} \]
i.c.

[_linear]

7172

\[ {}y y^{\prime }-x = 2 y^{2} \]
i.c.

[_rational, _Bernoulli]

7173

\[ {}L i^{\prime }+R i = E \]
i.c.

[_quadrature]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]
i.c.

[_quadrature]

7175

\[ {}y^{\prime } x +y = 4 x +1 \]
i.c.

[_linear]

7176

\[ {}y^{\prime }+4 x y = x^{3} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

7177

\[ {}\left (x +1\right ) y^{\prime }+y = \ln \left (x \right ) \]
i.c.

[_linear]

7178

\[ {}x \left (x +1\right ) y^{\prime }+x y = 1 \]
i.c.

[_linear]

7179

\[ {}y^{\prime }-y \sin \left (x \right ) = 2 \sin \left (x \right ) \]
i.c.

[_separable]

7180

\[ {}y^{\prime }+\tan \left (x \right ) y = \cos \left (x \right )^{2} \]
i.c.

[_linear]

7187

\[ {}y^{\prime }-2 x y = 1 \]
i.c.

[_linear]

7188

\[ {}y^{\prime }-2 x y = -1 \]
i.c.

[_linear]

7189

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 1 \]
i.c.

[_linear]

7190

\[ {}x^{2} y^{\prime }-y = x^{3} \]
i.c.

[_linear]

7191

\[ {}x^{3} y^{\prime }+2 x^{2} y = 10 \sin \left (x \right ) \]
i.c.

[_linear]

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]
i.c.

[_separable]

7193

\[ {}1 = \left (x +y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

7194

\[ {}y+\left (2 x +x y-3\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7195

\[ {}y^{\prime } x -4 y = x^{6} {\mathrm e}^{x} \]
i.c.

[_linear]

7197

\[ {}y^{\prime } x -4 y = x^{6} {\mathrm e}^{x} \]
i.c.

[_linear]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]
i.c.

[_quadrature]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

[_separable]

7382

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7383

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

7384

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

7385

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

7386

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

7387

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

7388

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7389

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7390

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

7391

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7392

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7394

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7395

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

7396

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

7397

\[ {}x +2 x^{3}+\left (y+2 y^{3}\right ) y^{\prime } = 0 \]

[_separable]

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7399

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

7400

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

7401

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7404

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7405

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7406

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

7408

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

7409

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

7410

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

7415

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

7416

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

7417

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7418

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7420

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7421

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7428

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7430

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7431

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7434

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7435

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7438

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x \]
i.c.

[_quadrature]

7441

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

7444

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

7445

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7446

\[ {}y^{\prime } x = x +\frac {y}{2} \]
i.c.

[_linear]

7447

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7454

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7456

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7474

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

7475

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7476

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

7502

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7503

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

7504

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7507

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7508

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

7509

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7510

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7511

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7512

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7516

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7547

\[ {}\left (1+x^{2} y^{2}\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7548

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

7555

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7556

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

7560

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7561

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7562

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7564

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7580

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

7583

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

7584

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

7588

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7590

\[ {}y^{\prime } = k y \]

[_quadrature]

7591

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7592

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

7593

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

7594

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

7597

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7598

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

7600

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

7601

\[ {}y^{\prime }+2 x y = x \]

[_separable]

7602

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

7603

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

7604

\[ {}y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

7605

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

7606

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

7607

\[ {}x^{2} y^{\prime }+2 x y = 1 \]

[_linear]

7608

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

7609

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7610

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7611

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7731

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7732

\[ {}y y^{\prime } = x \]

[_separable]

7733

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

7734

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

7735

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7736

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7737

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7739

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7740

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7743

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7747

\[ {}2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7748

\[ {}x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

7749

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

7750

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

7751

\[ {}y^{3} x^{2}-x^{3} y^{2} y^{\prime } = 0 \]

[_separable]

7752

\[ {}x +y+y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7753

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7754

\[ {}3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x = 0 \]

[_linear]

7755

\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

[_separable]

7756

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

7757

\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7758

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_quadrature]

7773

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7774

\[ {}y^{\prime } x = 2 y \]

[_separable]

7775

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7776

\[ {}y^{\prime } = k y \]

[_quadrature]

7779

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7780

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7781

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7782

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7784

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7785

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

7786

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7787

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7788

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7789

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7790

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

7791

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

7792

\[ {}y^{\prime } x = 1 \]

[_quadrature]

7793

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7794

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

7795

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7796

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7797

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7798

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7799

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7800

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7801

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7802

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

7803

\[ {}y^{\prime } = 1+2 x y \]

[_linear]

7805

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7807

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7808

\[ {}y^{\prime } = 4 x y \]

[_separable]

7809

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

7810

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

7811

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

7813

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7814

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

7815

\[ {}x y y^{\prime } = -1+y \]

[_separable]

7816

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7817

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7818

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7819

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7820

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7821

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7822

\[ {}\left (1+y\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7841

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7842

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

7843

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7844

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

7845

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7846

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

7848

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7849

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

7850

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7851

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7852

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

7854

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7855

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7856

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

7857

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

7858

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7859

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7860

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

7861

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7862

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

7863

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7865

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

7866

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

7867

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

7868

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7869

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7870

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7871

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7872

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7874

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7876

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7877

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

7879

\[ {}x^{2} y^{\prime } = 2 x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7880

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7885

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7886

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7887

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7888

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7893

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7894

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7895

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7896

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7897

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7898

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7899

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7900

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7901

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7902

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7903

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

7917

\[ {}y^{\prime } x +y = x \]

[_linear]

7918

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

7919

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7922

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7923

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

7924

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7925

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

7926

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

7927

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7929

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7931

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7932

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

8069

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

8073

\[ {}y^{\prime } = 2 x y \]

[_separable]

8075

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

8077

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

8079

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

8081

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8083

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

8085

\[ {}y^{\prime } x = y \]

[_separable]

8087

\[ {}x^{2} y^{\prime } = y \]

[_separable]

8089

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

8090

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

8094

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

8215

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

8435

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8437

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

8438

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8441

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

8442

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

8443

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8444

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8445

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 y^{\prime } \left (x -y\right )+2 x -5 y = 0 \]

[_quadrature]

8447

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8448

\[ {}x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

[_quadrature]

8449

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8450

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8451

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8452

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8469

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8488

\[ {}y = y^{\prime } x +x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

8534

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8539

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8545

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

8550

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

8553

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

8697

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

8698

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

8699

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

8700

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

8701

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8702

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8703

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

8704

\[ {}x y-1+x^{2} y^{\prime } = 0 \]

[_linear]

8713

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

8714

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

8715

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

8716

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

8717

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8718

\[ {}y^{\prime } = x +1 \]

[_quadrature]

8719

\[ {}y^{\prime } = x \]

[_quadrature]

8720

\[ {}y^{\prime } = y \]

[_quadrature]

8722

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

8723

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

8724

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8725

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8726

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

8727

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8728

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8730

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

8734

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8744

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8745

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8746

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

8758

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8789

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8792

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8794

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8796

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8889

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

8952

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8980

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

8986

\[ {}y^{\prime } = a \]

[_quadrature]

8987

\[ {}y^{\prime } = x \]

[_quadrature]

8988

\[ {}y^{\prime } = 1 \]

[_quadrature]

8989

\[ {}y^{\prime } = a x \]

[_quadrature]

8990

\[ {}y^{\prime } = y a x \]

[_separable]

8991

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8992

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8993

\[ {}y^{\prime } = y \]

[_quadrature]

8994

\[ {}y^{\prime } = b y \]

[_quadrature]

8997

\[ {}c y^{\prime } = a \]

[_quadrature]

8998

\[ {}c y^{\prime } = a x \]

[_quadrature]

8999

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

9000

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

9001

\[ {}c y^{\prime } = y \]

[_quadrature]

9002

\[ {}c y^{\prime } = b y \]

[_quadrature]

9007

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

9010

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

9012

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

9021

\[ {}y^{\prime } x = 1 \]

[_quadrature]

9022

\[ {}y^{\prime } x = \sin \left (x \right ) \]

[_quadrature]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9162

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

9163

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

9171

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

10016

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

10017

\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \]

[[_linear, ‘class A‘]]

10018

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

10019

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{2 x} = 0 \]

[_linear]

10020

\[ {}y^{\prime }+y \cos \left (x \right )-\frac {\sin \left (2 x \right )}{2} = 0 \]

[_linear]

10021

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )} = 0 \]

[_linear]

10022

\[ {}y^{\prime }+\tan \left (x \right ) y-\sin \left (2 x \right ) = 0 \]

[_linear]

10023

\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \]

[_separable]

10024

\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \]

[_linear]

10025

\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \]

[_linear]

10026

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

10031

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

10037

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

10040

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

10043

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

10045

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

10049

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

10053

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

10055

\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

10073

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

10074

\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

10075

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \]

[_separable]

10078

\[ {}y^{\prime }-\sqrt {\frac {a y^{2}+b y+c}{a \,x^{2}+b x +c}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10079

\[ {}y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10081

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

10082

\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10083

\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10084

\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10085

\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10087

\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{{2}/{3}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10090

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

10103

\[ {}y^{\prime } x -\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

10104

\[ {}y^{\prime } x +y-x \sin \left (x \right ) = 0 \]

[_linear]

10105

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

10106

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

10107

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

10108

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

10110

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

10115

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10122

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

10123

\[ {}y^{\prime } x -y \left (-1+2 y \ln \left (x \right )\right ) = 0 \]

[_Bernoulli]

10124

\[ {}y^{\prime } x +f \left (x \right ) \left (y^{2}-x^{2}\right )-y = 0 \]

[[_homogeneous, ‘class D‘], _Riccati]

10131

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

10132

\[ {}y^{\prime } x -y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

10135

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

10143

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

10144

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

10145

\[ {}3 y^{\prime } x -3 x \ln \left (x \right ) y^{4}-y = 0 \]

[_Bernoulli]

10146

\[ {}x^{2} y^{\prime }+y-x = 0 \]

[_linear]

10147

\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_linear]

10148

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

10150

\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10153

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10154

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+y a x +b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

10156

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

10161

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-1 = 0 \]

[_linear]

10162

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x \left (x^{2}+1\right ) = 0 \]

[_linear]

10163

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y-2 x^{2} = 0 \]

[_linear]

10166

\[ {}\left (x^{2}-1\right ) y^{\prime }-x y+a = 0 \]

[_linear]

10167

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

10171

\[ {}\left (x^{2}-1\right ) y^{\prime }+a y^{2} x +x y = 0 \]

[_separable]

10172

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

10174

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime }+3 x y-8 y+x^{2} = 0 \]

[_linear]

10178

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (4 x +1\right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10184

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10187

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

10188

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

10196

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

10205

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y-\sqrt {a^{2}+x^{2}}+x = 0 \]

[_linear]

10206

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (1+\ln \left (x \right )\right ) = 0 \]

[_linear]

10209

\[ {}y^{\prime } \cos \left (x \right )+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

10211

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3} = 0 \]

[_linear]

10213

\[ {}\left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right ) = 0 \]

[_linear]

10220

\[ {}y y^{\prime }+y^{2}+4 \left (x +1\right ) x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10221

\[ {}y y^{\prime }+a y^{2}-b \cos \left (x +c \right ) = 0 \]

[_Bernoulli]

10222

\[ {}y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

[_quadrature]

10223

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

10230

\[ {}\left (y-x^{2}\right ) y^{\prime }-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10231

\[ {}\left (y-x^{2}\right ) y^{\prime }+4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10233

\[ {}2 y y^{\prime }-x y^{2}-x^{3} = 0 \]

[_rational, _Bernoulli]

10236

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10240

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10242

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10245

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10246

\[ {}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

10248

\[ {}\left (x y+a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10252

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10253

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10254

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10255

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

10256

\[ {}x \left (2 y+x -1\right ) y^{\prime }-y \left (y+2 x +1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10257

\[ {}x \left (2 y-x -1\right ) y^{\prime }+y \left (2 x -y-1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10259

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10261

\[ {}\left (6 x y+x^{2}+3\right ) y^{\prime }+3 y^{2}+2 x y+2 x = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10264

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10267

\[ {}x \left (x y-2\right ) y^{\prime }+y^{3} x^{2}+x y^{2}-2 y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10268

\[ {}x \left (x y-3\right ) y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10269

\[ {}x^{2} \left (-1+y\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

10271

\[ {}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

10272

\[ {}2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_Bernoulli]

10273

\[ {}\left (2 x^{2} y+x \right ) y^{\prime }-y^{3} x^{2}+2 x y^{2}+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10274

\[ {}\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10276

\[ {}2 x^{3}+y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[_rational, _Bernoulli]

10280

\[ {}y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

[_exact, _Bernoulli]

10281

\[ {}f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[_Bernoulli]

10283

\[ {}\left (-x +y^{2}\right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

10284

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10286

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 x y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10287

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 x y+x^{2}+b = 0 \]

[_exact, _rational]

10288

\[ {}\left (y^{2}+x^{2}+x \right ) y^{\prime }-y = 0 \]

[_rational]

10289

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10290

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10291

\[ {}\left (y^{2}+4 \sin \left (x \right )\right ) y^{\prime }-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10296

\[ {}3 \left (y^{2}-x^{2}\right ) y^{\prime }+2 y^{3}-6 x \left (x +1\right ) y-3 \,{\mathrm e}^{x} = 0 \]

[‘y=_G(x,y’)‘]

10297

\[ {}\left (4 y^{2}+x^{2}\right ) y^{\prime }-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10298

\[ {}\left (4 y^{2}+2 x y+3 x^{2}\right ) y^{\prime }+y^{2}+6 x y+2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10301

\[ {}\left (6 y^{2}-3 x^{2} y+1\right ) y^{\prime }-3 x y^{2}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10302

\[ {}\left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 x y+a = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10303

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10307

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-y \left (y^{2}+x^{2}+a \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10308

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10311

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

10312

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

10313

\[ {}6 x y^{2} y^{\prime }+2 y^{3}+x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

10314

\[ {}\left (6 x y^{2}+x^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10315

\[ {}\left (x^{2} y^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10316

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (x^{2} y^{2}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10317

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 y^{3} x^{2}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

10318

\[ {}\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2} = 0 \]

[_exact, _rational]

10319

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10320

\[ {}\left (y^{2}+x^{2}+a \right ) y y^{\prime }+\left (y^{2}+x^{2}-a \right ) x = 0 \]

[_exact, _rational]

10321

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

10322

\[ {}\left (y+2 y^{3}\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

10323

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10324

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10327

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

10328

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10329

\[ {}\left (2 x y^{3}+y\right ) y^{\prime }+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10330

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }+y^{2}-x y = 0 \]

[_rational]

10331

\[ {}\left (3 x y^{3}-4 x y+y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10332

\[ {}\left (7 x y^{3}+y-5 x \right ) y^{\prime }+y^{4}-5 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10335

\[ {}\left (10 y^{3} x^{2}-3 y^{2}-2\right ) y^{\prime }+5 x y^{4}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10336

\[ {}\left (a x y^{3}+c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y = 0 \]

[_rational]

10337

\[ {}\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y = 0 \]

[_rational]

10345

\[ {}\left (\sqrt {x y}-1\right ) x y^{\prime }-\left (\sqrt {x y}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

10348

\[ {}\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

10349

\[ {}\left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y = 0 \]

[_exact]

10353

\[ {}\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

unknown

10354

\[ {}\left (x \,{\mathrm e}^{y}+{\mathrm e}^{x}\right ) y^{\prime }+{\mathrm e}^{y}+y \,{\mathrm e}^{x} = 0 \]

[_exact]

10355

\[ {}x \left (3 \,{\mathrm e}^{x y}+2 \,{\mathrm e}^{-x y}\right ) \left (y^{\prime } x +y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

10356

\[ {}\left (\ln \left (y\right )+x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

10357

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10358

\[ {}x \left (2 x^{2} y \ln \left (y\right )+1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10359

\[ {}x \left (y \ln \left (x y\right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (x y\right )-y+a x \right ) = 0 \]

[‘y=_G(x,y’)‘]

10360

\[ {}y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

10361

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

10365

\[ {}y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

unknown

10366

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

10367

\[ {}\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10368

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

10369

\[ {}\left (x^{2} \cos \left (y\right )+2 y \sin \left (x \right )\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

[_exact]

10371

\[ {}y^{\prime } \sin \left (y\right ) \cos \left (x \right )+\cos \left (y\right ) \sin \left (x \right ) = 0 \]

[_separable]

10373

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

10374

\[ {}\left (x \sin \left (x y\right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (x y\right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

[_exact]

10375

\[ {}\left (x^{2} y \sin \left (x y\right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (x y\right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

10376

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10377

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10378

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

10404

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10408

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10446

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

10450

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

10452

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

10454

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

10456

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10460

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

10474

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10482

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10492

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10516

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10537

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10547

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

10550

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10551

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

10662

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10667

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10684

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \]

[‘y=_G(x,y’)‘]

10694

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

10698

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10699

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10702

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \]

[‘y=_G(x,y’)‘]

10716

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10739

\[ {}y^{\prime } = \frac {\left (x^{3}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10740

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \]

[_rational]

10759

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y^{3}\right )} \]

[_rational]

10761

\[ {}y^{\prime } = \frac {\left (x^{2}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10762

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10774

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10776

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

10792

\[ {}y^{\prime } = \frac {\left (x^{4}+x^{3}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10804

\[ {}y^{\prime } = -\frac {y \left (x y+1\right )}{x \left (x y+1-y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10808

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10810

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10829

\[ {}y^{\prime } = \frac {y}{x \left (-1+x y+x y^{3}+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10832

\[ {}y^{\prime } = \frac {y \left (x y+1\right )}{x \left (-x y-1+y^{4} x^{3}\right )} \]

[_rational]

10834

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y+y^{3}+y^{4}\right )} \]

[_rational]

10841

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y-y^{3}-y^{4}\right )} \]

[_rational]

10864

\[ {}y^{\prime } = \frac {14 x y+12+2 x +x^{3} y^{3}+6 x^{2} y^{2}}{x^{2} \left (x y+2+x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10871

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+x \cos \left (2 y\right )+\cos \left (2 y\right ) x^{3}+\cos \left (2 y\right ) x^{4}+x +x^{3}+x^{4}}{2 x} \]

[‘y=_G(x,y’)‘]

10882

\[ {}y^{\prime } = \frac {-30 x^{3} y+12 x^{6}+70 x^{{7}/{2}}-30 x^{3}-25 y \sqrt {x}+50 x -25 \sqrt {x}-25}{5 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10897

\[ {}y^{\prime } = \frac {y a^{2} x +a +a^{2} x +y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 y a x +1}{a^{2} x^{2} \left (y a x +1+a x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10911

\[ {}y^{\prime } = \frac {\left (y-a \ln \left (y\right ) x +x^{2}\right ) y}{\left (-y \ln \left (y\right )-y \ln \left (x \right )-y+a x \right ) x} \]

[NONE]

10969

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10970

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10975

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10978

\[ {}y^{\prime } = \frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10979

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10990

\[ {}y^{\prime } = \frac {x^{3} y^{3}+6 x^{2} y^{2}+12 x y+8+2 x}{x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10991

\[ {}y^{\prime } = \frac {y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 y a x +1+a^{2} x}{x^{3} a^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

12001

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

12002

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

12003

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

12004

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

12019

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

12055

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12165

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

[_linear]

12326

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12494

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12497

\[ {}\left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12798

\[ {}\frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12799

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12800

\[ {}\frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12801

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

12802

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12805

\[ {}2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12809

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12811

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12812

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12816

\[ {}y+2 x y^{2}-y^{3} x^{2}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12817

\[ {}2 y+3 x y^{2}+\left (2 x^{2} y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12818

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12819

\[ {}y^{\prime }+y \cot \left (x \right ) = \sec \left (x \right ) \]

[_linear]

12820

\[ {}y^{\prime } x +\left (x +1\right ) y = {\mathrm e}^{x} \]

[_linear]

12821

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12822

\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \]

[_linear]

12823

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

[_linear]

12825

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12826

\[ {}y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right ) = \sin \left (x \right ) \]

[_separable]

12830

\[ {}y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right ) = 0 \]

[_separable]

12832

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12833

\[ {}\frac {-y+y^{\prime } x}{\sqrt {x^{2}-y^{2}}} = y^{\prime } x \]

[‘y=_G(x,y’)‘]

12834

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12835

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12836

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12837

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

12838

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12839

\[ {}2 x +\left (x^{2}+2 y+y^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12840

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12841

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12843

\[ {}y^{\prime } x -y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12844

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12845

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12849

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12851

\[ {}y^{\prime } x +y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

12852

\[ {}\left (1-x \right ) y+x \left (1-y\right ) y^{\prime } = 0 \]

[_separable]

12853

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12856

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12858

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

12859

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a y^{2} x \]

[_separable]

12860

\[ {}x y^{2} \left (3 y+y^{\prime } x \right )-2 y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12861

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

12862

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12863

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

12864

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12865

\[ {}\left (1-x \right ) y-\left (1+y\right ) x y^{\prime } = 0 \]

[_separable]

12866

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12869

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12870

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

12873

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12881

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12909

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12915

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

13025

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

13026

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

13027

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

13030

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

13031

\[ {}2 t x^{\prime } = x \]

[_separable]

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

13037

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

13044

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

13046

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

13048

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

13052

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

13053

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

13054

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

13055

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

13057

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

13060

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

13062

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

13066

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

13068

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

13075

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

13078

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

[_linear]

13084

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

[_separable]

13087

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

13089

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

13093

\[ {}y^{\prime }+a y = \sqrt {1+t} \]

[[_linear, ‘class A‘]]

13094

\[ {}x^{\prime } = 2 t x \]

[_separable]

13095

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

13098

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13102

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

13106

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13107

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

[_exact]

13108

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

[NONE]

13109

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

13110

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

13111

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

13246

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

13250

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13251

\[ {}y^{\prime } x +y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13252

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

13253

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13258

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

13262

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

13263

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

13269

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

13270

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

13272

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13273

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

13274

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13276

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13277

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

13278

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13279

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

13280

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13281

\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13282

\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

13283

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

13284

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

13285

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13286

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

13287

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13288

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13289

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

13290

\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

13291

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

13294

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

13295

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

13296

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

13297

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

13298

\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13301

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13302

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13304

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13306

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13307

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13309

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13310

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13311

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13312

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13313

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13314

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

13315

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

13316

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

13317

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

13318

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

13319

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

13320

\[ {}y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

13321

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

13322

\[ {}y^{\prime } x +x y+y-1 = 0 \]

[_linear]

13323

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13324

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

13325

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

13326

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_linear]

13327

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

13328

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13329

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13330

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

13331

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{t x} \]

[_separable]

13332

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

13333

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

13334

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_linear]

13335

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13336

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

13337

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13338

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13339

\[ {}y^{\prime } x +y = \left (x y\right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

13344

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

13345

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

13346

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

13347

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

13351

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

13352

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13353

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13354

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

13356

\[ {}{\mathrm e}^{2 x} y^{2}+\left (y \,{\mathrm e}^{2 x}-2 y\right ) y^{\prime } = 0 \]

[_separable]

13357

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

13359

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13360

\[ {}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x} \]

[_linear]

13362

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

13363

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

13364

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13365

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13366

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13367

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

13368

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

13369

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

13371

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

13375

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13376

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13377

\[ {}y^{2} \left (x +1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13378

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

13379

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13381

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13385

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13704

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

13705

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

13706

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

13707

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

13708

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

13709

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

13710

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

13711

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

13712

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

13713

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

13714

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

13715

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13717

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

13718

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

13719

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

13720

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13721

\[ {}x^{\prime } = t^{2} x \]

[_separable]

13722

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13723

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13724

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13725

\[ {}y^{\prime } x = k y \]

[_separable]

13726

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

13727

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13728

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13729

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13730

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13731

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

13732

\[ {}x^{\prime }+t x = 4 t \]
i.c.

[_separable]

13733

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

13734

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

13735

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

13736

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

13737

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

13738

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

13739

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

[[_linear, ‘class A‘]]

13740

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13741

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_linear]

13742

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

13743

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

13744

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13745

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

13746

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

13749

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13851

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

13852

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13853

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13854

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13856

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

13857

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13862

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13864

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

13868

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13877

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13878

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

13879

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13883

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

13887

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

13889

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13890

\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13891

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13892

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

13894

\[ {}\left (-x +y^{2}\right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

13895

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13896

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13948

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13953

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13955

\[ {}y^{\prime } = x \,{\mathrm e}^{-x +y^{2}} \]

[_separable]

13957

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13964

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

13966

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13968

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

13969

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14154

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

14162

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14163

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

14165

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

14173

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

14174

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

14175

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14176

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

14177

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14181

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

14182

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14183

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14186

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

14188

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

14191

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

14192

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

14193

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

14194

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

14195

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

14196

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

14197

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

14198

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

14199

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

14201

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

14202

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

14206

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

14207

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

14208

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

14209

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

14210

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

14211

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14212

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

14213

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14214

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

14221

\[ {}y = y^{\prime } x +y^{\prime } \]

[_separable]

14224

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

14276

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

14279

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

[_linear]

14280

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

14282

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

14284

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

14289

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]
i.c.

[_linear]

14311

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

14315

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

14316

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

14318

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

14319

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

14321

\[ {}y^{\prime } x -\sin \left (x \right ) = 0 \]

[_quadrature]

14322

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14326

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

14332

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

14333

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

14334

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

14336

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14338

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14339

\[ {}x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

14351

\[ {}y^{\prime } = 1-x \]

[_quadrature]

14352

\[ {}y^{\prime } = x -1 \]

[_quadrature]

14353

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14354

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14355

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14356

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14357

\[ {}y^{\prime } = x y \]

[_separable]

14358

\[ {}y^{\prime } = -x y \]

[_separable]

14361

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

14362

\[ {}y^{\prime } = x y \]

[_separable]

14363

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14364

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14365

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14366

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14368

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

14369

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14371

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14373

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

14374

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14375

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14376

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

14377

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

[_quadrature]

14378

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14379

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14380

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14381

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

14382

\[ {}y^{\prime } = \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

14383

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14384

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14385

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14386

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14387

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

14388

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

14389

\[ {}y^{\prime } = x y+\frac {1}{x^{2}+1} \]
i.c.

[_linear]

14390

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

14391

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

14392

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

14393

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

14394

\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \]
i.c.

[_linear]

14395

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14397

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

14398

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

14399

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

14400

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

14401

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14402

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14403

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14404

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14405

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14406

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14407

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14408

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14409

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14410

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14411

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14412

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14413

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14414

\[ {}y^{\prime } = x +x y \]
i.c.

[_separable]

14415

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14416

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

14417

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

14418

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

14419

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

[_linear]

14420

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (2 y+x \right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14421

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14422

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

14423

\[ {}y^{\prime } = x y+2 \]
i.c.

[_linear]

14424

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14425

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

14426

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

14427

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

14428

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]
i.c.

[_linear]

14429

\[ {}x -y y^{\prime } = 0 \]

[_separable]

14430

\[ {}y-y^{\prime } x = 0 \]

[_separable]

14431

\[ {}x^{2}-y+y^{\prime } x = 0 \]

[_linear]

14432

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14433

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

14434

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

14435

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14436

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

14437

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14438

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14439

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

14440

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

14441

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

14442

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14443

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14444

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14445

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14446

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14447

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14448

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14449

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14450

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14451

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14452

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14453

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14454

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14455

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14456

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14457

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14458

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14459

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14460

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14461

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14462

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14463

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14464

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14465

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14466

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14467

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14468

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14470

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14471

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14472

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14473

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14474

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14601

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

14602

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14603

\[ {}y^{\prime } = t^{4} y \]

[_separable]

14604

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14605

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14606

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14607

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

14608

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14609

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14610

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

14611

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14612

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14613

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14614

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14615

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

14616

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

14617

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

14618

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

14619

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14620

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

14621

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14622

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14623

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

14624

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14625

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14626

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14627

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

14628

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14629

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14630

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

14631

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14632

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14633

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14634

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14635

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14636

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

14637

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

14638

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14639

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14640

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14641

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

14642

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14643

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

14645

\[ {}y^{\prime } = \left (1+t \right ) y \]
i.c.

[_separable]

14646

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14647

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14649

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14650

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14651

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14652

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14653

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14654

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

14655

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14656

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

14657

\[ {}y^{\prime } = t +t y \]

[_separable]

14658

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

14659

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14660

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

14661

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14662

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14663

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14664

\[ {}v^{\prime } = 2 V \left (t \right )-2 v \]

[[_linear, ‘class A‘]]

14665

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14668

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

14669

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14670

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14671

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14672

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14673

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

14675

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14676

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14677

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

14678

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14680

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14681

\[ {}y^{\prime } = y \left (y-1\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14682

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14683

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14684

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

14685

\[ {}y^{\prime } = \frac {1}{\left (2+y\right )^{2}} \]
i.c.

[_quadrature]

14686

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

14687

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14688

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14689

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14691

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14692

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14694

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14695

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14696

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14698

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14699

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14700

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14701

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14702

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14703

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14705

\[ {}y^{\prime } = \frac {1}{y-2} \]

[_quadrature]

14706

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

14707

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14708

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14709

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14710

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

14711

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

14712

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14713

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14714

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14715

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14716

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14717

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14718

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14719

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14720

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14721

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14723

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14724

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14725

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14726

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14727

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14728

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14729

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14730

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

14731

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

14732

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

14733

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

14734

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14735

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14736

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

14737

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

14738

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14739

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

14740

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14741

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14742

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

14743

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

14744

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

14745

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14746

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

14747

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

14748

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

14749

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

14750

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

14751

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

14752

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

14753

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

14754

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

14755

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

14756

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

14757

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

14758

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

14760

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14761

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

14762

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14763

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14764

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

14765

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14766

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

14767

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14768

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

14769

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14771

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14772

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14773

\[ {}y^{\prime } = t y \]

[_separable]

14774

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

14775

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

14776

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

14777

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

14778

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14779

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14780

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

14781

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

14782

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14783

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

14784

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14785

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

14786

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

14787

\[ {}y^{\prime } = \frac {\left (1+t \right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

14788

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14790

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14791

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

14794

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

14795

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14796

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14979

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14980

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14981

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14983

\[ {}y y^{\prime } = 2 x \]

[_separable]

14989

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14990

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14991

\[ {}y^{\prime } x +\sqrt {x} = 2 \]

[_quadrature]

14992

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

[_quadrature]

14993

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14994

\[ {}y^{\prime } = x \cos \left (x \right ) \]

[_quadrature]

14995

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14996

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14997

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

15001

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

15002

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

15003

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

15004

\[ {}y^{\prime } x +2 = \sqrt {x} \]
i.c.

[_quadrature]

15005

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

15006

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

15008

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

15009

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

15010

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

15011

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

15012

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15013

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15014

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

15015

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

15016

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

15017

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15018

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

15019

\[ {}y^{\prime } x = \sin \left (x \right ) \]
i.c.

[_quadrature]

15020

\[ {}y^{\prime } x = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

15024

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

15026

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

15027

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

15029

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

15030

\[ {}\left (x -2\right ) y^{\prime } = 3+y \]

[_separable]

15031

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

15032

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

15034

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

15035

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

15036

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

15038

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

15039

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

15040

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

15041

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

15042

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

15044

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

15045

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15046

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

15047

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

15048

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

15049

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

15050

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

15051

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

15052

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

15053

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

15054

\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15055

\[ {}y^{\prime } = x y-4 x \]

[_separable]

15056

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

15057

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

15058

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

15059

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

15060

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15061

\[ {}y^{\prime } = x y-4 x \]

[_separable]

15062

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

15063

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

15064

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

15065

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

15066

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

15067

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

15068

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

15069

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

15070

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

15071

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

15072

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

15073

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

15074

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

15075

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15076

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

15077

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

15078

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

15079

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

15080

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

15081

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

15082

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y \]
i.c.

[_separable]

15083

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15087

\[ {}y^{\prime } = 1+x y+3 y \]

[_linear]

15088

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

15089

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

15090

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

15091

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

15092

\[ {}y^{\prime } x +\cos \left (x^{2}\right ) = 827 y \]

[_linear]

15093

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

15094

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

15095

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

15096

\[ {}y^{\prime }-2 x y = x \]

[_separable]

15097

\[ {}y^{\prime } x +3 y-10 x^{2} = 0 \]

[_linear]

15098

\[ {}x^{2} y^{\prime }+2 x y = \sin \left (x \right ) \]

[_linear]

15099

\[ {}y^{\prime } x = \sqrt {x}+3 y \]

[_linear]

15100

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

15101

\[ {}y^{\prime } x +\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

15102

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

15103

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15104

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15105

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

15106

\[ {}y^{\prime } x +3 y = 20 x^{2} \]
i.c.

[_linear]

15107

\[ {}y^{\prime } x = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

15108

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

15109

\[ {}y^{\prime }+6 x y = \sin \left (x \right ) \]
i.c.

[_linear]

15110

\[ {}x^{2} y^{\prime }+x y = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

15111

\[ {}-y+y^{\prime } x = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

15113

\[ {}y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15114

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

15116

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15117

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15118

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

15119

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15120

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

15121

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15123

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15124

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15127

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15128

\[ {}\left (y-x \right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15129

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15130

\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15131

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15135

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15138

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

[‘y=_G(x,y’)‘]

15140

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15141

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15142

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15143

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15144

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

15145

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

15146

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15147

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

15148

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

15149

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

15150

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

15151

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15153

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15154

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

15155

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

15157

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15158

\[ {}6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15159

\[ {}y^{\prime } x = 2 y-6 x^{3} \]

[_linear]

15160

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

15161

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

15163

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

15166

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

[_linear]

15167

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

15168

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15169

\[ {}3 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

15170

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

15172

\[ {}2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_linear]

15173

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

15174

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

15175

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

15177

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15178

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15179

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

[_quadrature]

15180

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15182

\[ {}y^{\prime } = \frac {2 y+x}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15184

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

15185

\[ {}1-\left (2 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15186

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15187

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

15188

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

15190

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

15191

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15192

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15193

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

15194

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15195

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

15196

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

15197

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15198

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

15199

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15200

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

15201

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

15202

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15203

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15205

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15206

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

15207

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15208

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

15266

\[ {}y^{\prime } x +3 y = {\mathrm e}^{2 x} \]

[_linear]

15788

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

15790

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

15791

\[ {}y^{\prime }+x y = 0 \]

[_separable]

15792

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15802

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15803

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15804

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

15805

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15806

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

15807

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

15808

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

15809

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

15810

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

15811

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

15812

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

15813

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

15814

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15815

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

15816

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

15817

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

15818

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

15819

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

15820

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

15821

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15828

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

15829

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

15830

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

15831

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15832

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

15833

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15834

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

15838

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15842

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15843

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15850

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15851

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15852

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15853

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

15854

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15855

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15856

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15859

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15860

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15863

\[ {}y^{\prime } = y+\frac {1}{-t +1} \]

[_linear]

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15865

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15867

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15868

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15869

\[ {}t y^{\prime } = y \]

[_separable]

15870

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15871

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15872

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15873

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15874

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15875

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15876

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15877

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15878

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15879

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15880

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15881

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

15882

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

15883

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

15884

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

15885

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

15886

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15887

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15888

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

15889

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

15890

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15891

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15892

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15893

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15894

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15895

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15896

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15897

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15898

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15899

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15900

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15901

\[ {}y^{\prime } = \frac {y+1}{1+t} \]

[_separable]

15902

\[ {}y^{\prime } = \frac {2+y}{2 t +1} \]

[_separable]

15903

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15904

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15905

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15906

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15907

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15908

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15909

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15910

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15911

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15912

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15913

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15914

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15915

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15916

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15917

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15918

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15919

\[ {}\frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15920

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15921

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15922

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15923

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15924

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15925

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15928

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15929

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15930

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15931

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15932

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15933

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15934

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15935

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15936

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15937

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15938

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15939

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15940

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15941

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15942

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15943

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15944

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15945

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15946

\[ {}y^{\prime } = \frac {3+y}{3 x +1} \]
i.c.

[_separable]

15947

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15948

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15949

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15950

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15951

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15952

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15953

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15954

\[ {}y^{\prime } = -\frac {y-2}{x -2} \]
i.c.

[_separable]

15958

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15959

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15960

\[ {}y^{\prime } = -y \]

[_quadrature]

15961

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15962

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15963

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15964

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15965

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15966

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15967

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

15968

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15969

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15970

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15971

\[ {}t y^{\prime }+y = t \]

[_linear]

15972

\[ {}y^{\prime } x +y = x \,{\mathrm e}^{x} \]

[_linear]

15973

\[ {}y^{\prime } x +y = {\mathrm e}^{-x} \]

[_linear]

15974

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15975

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15976

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15977

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

15978

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15979

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15980

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15981

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

15982

\[ {}y^{\prime }+x y = x^{3} \]

[_linear]

15983

\[ {}y^{\prime }-x y = x \]

[_separable]

15984

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

15985

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15986

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15987

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15988

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15989

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15990

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15991

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15992

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15993

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15994

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

15995

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

15996

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

15997

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15998

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15999

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

16000

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

16004

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

16005

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

16006

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

16007

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

16008

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

16009

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

16010

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16011

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

16012

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16013

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

16014

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16015

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

16016

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

16017

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16018

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16019

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

16020

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

16021

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16022

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16023

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

16024

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16025

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

16026

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

16027

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

16028

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

16029

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

16030

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16031

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

16032

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

16033

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

16034

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

16035

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

16036

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

16037

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

16038

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

16039

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16040

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

16041

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

16042

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

16043

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16044

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16045

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

16046

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

16048

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

[_exact]

16049

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

16050

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

16051

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16052

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16053

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

16054

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

16055

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

16056

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16057

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16058

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16059

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

16060

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

16061

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]
i.c.

[_exact, _rational, _Bernoulli]

16062

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

16063

\[ {}-2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16064

\[ {}-4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16065

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

16066

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

16067

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16068

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16069

\[ {}y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

16070

\[ {}5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16072

\[ {}2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

16073

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

16074

\[ {}-1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

16075

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

16076

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16077

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16078

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

16080

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

16082

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

16084

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16085

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16086

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16090

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

16091

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16092

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

16093

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

16095

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

16096

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16098

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16099

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16100

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

16101

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16104

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16106

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16109

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

16112

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16113

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

16115

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

16116

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16120

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16123

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

16132

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

16135

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16136

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

16137

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

16138

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

16139

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

16140

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16141

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

16142

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

16143

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

16144

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

16145

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

16147

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16148

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

16150

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16151

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16152

\[ {}t^{2}-y+\left (y-t \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16153

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

16154

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

16155

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16156

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

16157

\[ {}y^{\prime }+t y = t \]

[_separable]

16158

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

16159

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

16161

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

16163

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

16166

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16167

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

16168

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16169

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16170

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16171

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

16174

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

16175

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

16176

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

16300

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

16301

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16302

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

16303

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

16304

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

16665

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16666

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16669

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16670

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16672

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

16675

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

16676

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

16677

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

16678

\[ {}y^{\prime } = x +1 \]

[_quadrature]

16679

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

16680

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

16681

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

16682

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

16683

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

16686

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

16687

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

16688

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

16689

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16690

\[ {}y^{\prime } = 1-x \]

[_quadrature]

16691

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

16692

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

16693

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16694

\[ {}y^{\prime } = 1 \]

[_quadrature]

16695

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

16696

\[ {}y^{\prime } = y \]

[_quadrature]

16697

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16700

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

16701

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

16702

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

16703

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

16704

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

16705

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

16706

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

16709

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16711

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16712

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

16713

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

16717

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

16719

\[ {}y^{\prime } x +y = a \left (1+x y\right ) \]
i.c.

[_linear]

16721

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

16733

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16734

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

16735

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

16738

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

16739

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16743

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16744

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16745

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

16747

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16748

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16749

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16750

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16752

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16753

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16754

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16757

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

16758

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

16759

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

16760

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

16761

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

16762

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

16763

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

16764

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

16766

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

16768

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16769

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

16770

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

16771

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

16772

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

16773

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

16774

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

16775

\[ {}2 y^{\prime } x -y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

16776

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

16777

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

16778

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1 \]

[_linear]

16779

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16781

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

16785

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

16787

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16789

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

16791

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16795

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

16796

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16797

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16798

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

16799

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16800

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

16801

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

16802

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

16803

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

16804

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16805

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

16806

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16807

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

16808

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

16809

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16810

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

16811

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

16812

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

16813

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

16815

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

16816

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16819

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0 \]

[_quadrature]

16820

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16821

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16823

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16851

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16868

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

16870

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16871

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16872

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

16873

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16874

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

16875

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

16876

\[ {}x^{2}+y^{\prime } x = 3 x +y^{\prime } \]

[_quadrature]

16877

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16879

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16882

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16883

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16884

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16885

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16887

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16888

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16890

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16891

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16896

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16897

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16898

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16899

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16902

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16904

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

[[_homogeneous, ‘class G‘]]

16910

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

17300

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

17301

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

17302

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

17303

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

17304

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

17305

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

17306

\[ {}y y^{\prime } = \left (x +x y^{2}\right ) {\mathrm e}^{x^{2}} \]

[_separable]

17307

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

17308

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

17309

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

17310

\[ {}y^{\prime } = 4 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

17311

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

17312

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

17313

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

17314

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

17315

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

17316

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

17317

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

17318

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

17320

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

17321

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

17322

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]
i.c.

[_separable]

17323

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

17324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

17325

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

17326

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17327

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

17328

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

17329

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

17330

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17331

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

17332

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

17333

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17334

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

17335

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]
i.c.

[_separable]

17336

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

[_quadrature]

17337

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

17338

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

17339

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

[[_linear, ‘class A‘]]

17340

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

[_linear]

17341

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

17342

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

17343

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

17344

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

17345

\[ {}2 y^{\prime }+y = 3 t \]

[[_linear, ‘class A‘]]

17346

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

[_linear]

17347

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

17348

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17349

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

17350

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

17351

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]
i.c.

[_linear]

17352

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

17353

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

17354

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]
i.c.

[_linear]

17355

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]
i.c.

[_linear]

17356

\[ {}t y^{\prime }+\left (1+t \right ) y = t \]
i.c.

[_linear]

17357

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17358

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

17359

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

17360

\[ {}t y^{\prime }+\left (1+t \right ) y = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

17361

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

17362

\[ {}\sin \left (t \right ) y^{\prime }+y \cos \left (t \right ) = {\mathrm e}^{t} \]
i.c.

[_linear]

17363

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17364

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]
i.c.

[[_linear, ‘class A‘]]

17365

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17366

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17367

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

17368

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

[[_linear, ‘class A‘]]

17369

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

[_linear]

17370

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

17371

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17372

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]
i.c.

[_linear]

17373

\[ {}t \left (t -4\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

17374

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

17375

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17376

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17377

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]
i.c.

[_linear]

17382

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

17383

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17386

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17387

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17388

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

17389

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

17390

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

17395

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

17397

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

[_exact, _rational]

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

17399

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17401

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

17403

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

[_exact]

17404

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17407

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17408

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

17409

\[ {}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

17410

\[ {}\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

[NONE]

17411

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17412

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17413

\[ {}3 x^{2} y+2 x y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

[[_linear, ‘class A‘]]

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

17417

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17419

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

17420

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17421

\[ {}y y^{\prime } = x +1 \]

[_separable]

17422

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

[_separable]

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17437

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

17446

\[ {}y^{\prime } x +\left (x +1\right ) y = x \]

[_linear]

17447

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

[_Bernoulli]

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17450

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

[_exact, _Bernoulli]

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

[_linear]

17452

\[ {}y^{\prime } x = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17543

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]
i.c.

[_quadrature]

17891

\[ {}y^{\prime } = 2 \]

[_quadrature]

17892

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

17895

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

17897

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17898

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17899

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17900

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17901

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

17907

\[ {}y^{\prime } \cos \left (x \right ) = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

[_linear]

17908

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17909

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

17910

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17911

\[ {}y^{\prime } x +y = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17912

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

[_rational, _Bernoulli]

17914

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

17916

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

17921

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \]

[[_homogeneous, ‘class G‘], _rational]

17923

\[ {}y^{\prime } = k y+f \left (x \right ) \]

[[_linear, ‘class A‘]]

17925

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

17926

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17927

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

17928

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, _rational]

17929

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17930

\[ {}\left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17932

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

17933

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17934

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

17936

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17938

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17957

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

18056

\[ {}y^{\prime } = 2 x \]

[_quadrature]

18057

\[ {}y^{\prime } x = 2 y \]

[_separable]

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

18059

\[ {}y^{\prime } = k y \]

[_quadrature]

18062

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18063

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

18064

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18065

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18067

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18068

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

18069

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

18070

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

18071

\[ {}y^{\prime } x = 1 \]

[_quadrature]

18072

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

18073

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

18074

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

18075

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

18076

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

18077

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

18078

\[ {}x y y^{\prime } = -1+y \]

[_separable]

18079

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

18081

\[ {}y^{\prime } = 2 x y \]

[_separable]

18082

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

18083

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

18084

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

18085

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

18086

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

18087

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

18088

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18089

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

18090

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

18091

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18092

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

18093

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

18095

\[ {}y^{\prime } x = 2 x^{2}+1 \]
i.c.

[_quadrature]

18097

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18098

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

18100

\[ {}y^{\prime } = 2 x y+1 \]

[_linear]

18103

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

18104

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18105

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18107

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

18109

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18110

\[ {}y^{\prime } x = 2 x +3 y \]

[_linear]

18112

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18113

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18120

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

18121

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18122

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18123

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18124

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18125

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

18126

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18127

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

18128

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

18129

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

18130

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

18131

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

18132

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18133

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

18134

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 y^{3} x^{2}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

18135

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

18136

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18138

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

18139

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

18140

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

18141

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18142

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

18143

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18144

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18145

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

18146

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18147

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18148

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

18149

\[ {}y+\left (x -2 y^{3} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18150

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18151

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18152

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

18153

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18154

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

18155

\[ {}-y+y^{\prime } x = \left (1+y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational]

18156

\[ {}y-y^{\prime } x = x y^{3} y^{\prime } \]

[_separable]

18157

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

18158

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18160

\[ {}y^{2}-y+y^{\prime } x = 0 \]

[_separable]

18161

\[ {}-y+y^{\prime } x = 2 x^{2}-3 \]

[_linear]

18162

\[ {}y^{\prime } x +y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18163

\[ {}y-x y^{2}+\left (x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_rational]

18164

\[ {}-y+y^{\prime } x = x^{2} y^{4} \left (y^{\prime } x +y\right ) \]

[[_homogeneous, ‘class G‘], _rational]

18165

\[ {}y^{\prime } x +y+x^{2} y^{5} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18166

\[ {}2 x y^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18167

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

18169

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

18170

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

18171

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

[_linear]

18172

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

18173

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

18174

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

18175

\[ {}y-x +x y \cot \left (x \right )+y^{\prime } x = 0 \]

[_linear]

18176

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

[_linear]

18177

\[ {}y^{\prime } x \ln \left (x \right )+y = 3 x^{3} \]

[_linear]

18178

\[ {}y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

[_linear]

18179

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18180

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

18181

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18182

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18183

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

18185

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18186

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

18200

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18204

\[ {}y^{3} x^{2}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

18206

\[ {}y^{\prime } x +y = y^{2}+x^{2} y^{\prime } \]

[_separable]

18207

\[ {}x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18208

\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18210

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

18211

\[ {}y^{\prime } x +y = x^{2} \cos \left (x \right ) \]

[_linear]

18213

\[ {}\cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

18215

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

18216

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

18217

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

18218

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18219

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

[_linear]

18220

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

[_exact]

18223

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

18224

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18225

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

[_linear]

18227

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

18228

\[ {}y^{\prime } = \frac {x +2 y+2}{-2 x +y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18229

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

18230

\[ {}\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18231

\[ {}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

[_linear]

18232

\[ {}x y^{2}+y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18234

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18235

\[ {}x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

[_linear]

18236

\[ {}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18237

\[ {}{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

[_linear]

18238

\[ {}3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

18240

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18242

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

18243

\[ {}\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18245

\[ {}x y+y-1+y^{\prime } x = 0 \]

[_linear]

18246

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18248

\[ {}x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right ) \]

[_linear]

18488

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

18489

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

18490

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

18491

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

18492

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

18493

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18496

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

18497

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18498

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18499

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18500

\[ {}3 t^{2} x-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

18501

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

18503

\[ {}\left (t^{2}-x^{2}\right ) x^{\prime } = t x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18504

\[ {}{\mathrm e}^{3 t} x^{\prime }+3 x \,{\mathrm e}^{3 t} = 2 t \]

[[_linear, ‘class A‘]]

18505

\[ {}2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2} \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

18506

\[ {}x^{\prime }+2 x = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

18507

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

18508

\[ {}x^{\prime }-x \tan \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

18509

\[ {}t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3} \]

[_linear]

18510

\[ {}x^{\prime }+2 t x+t x^{4} = 0 \]

[_separable]

18511

\[ {}t x^{\prime }+x \ln \left (t \right ) = t^{2} \]

[_linear]

18512

\[ {}t x^{\prime }+x g \left (t \right ) = h \left (t \right ) \]

[_linear]

18514

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18532

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18535

\[ {}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \]

[_separable]

18537

\[ {}v^{\prime }+u^{2} v = \sin \left (u \right ) \]

[_linear]

18539

\[ {}v^{\prime }+\frac {2 v}{u} = 3 \]

[_linear]

18541

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18542

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18543

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18544

\[ {}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \]

[_separable]

18545

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18547

\[ {}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18550

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18551

\[ {}\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t \]

[_exact]

18552

\[ {}y^{\prime }+x y = x \]

[_separable]

18553

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

18554

\[ {}y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}} \]

[_Bernoulli]

18555

\[ {}p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \]

[_linear]

18556

\[ {}\left (T \ln \left (t \right )-1\right ) T = t T^{\prime } \]

[_Bernoulli]

18557

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

18566

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

18569

\[ {}y^{\prime } = x \left (a y^{2}+b \right ) \]

[_separable]

18570

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18571

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

18574

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

18575

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18576

\[ {}v^{\prime }+2 v u = 2 u \]

[_separable]

18577

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18588

\[ {}5 x^{\prime }+x = \sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

18604

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

18619

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

[_linear]

18620

\[ {}y^{\prime }+y \cot \left (x \right ) = \csc \left (x \right )^{2} \]

[_linear]

18621

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

18623

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

18624

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

[_linear]

18625

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

18626

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18627

\[ {}y^{\prime }+y \sin \left (x \right ) = y^{2} \sin \left (x \right ) \]

[_separable]

18628

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18630

\[ {}3 y^{2} y^{\prime }+y^{3} = x -1 \]

[_rational, _Bernoulli]

18632

\[ {}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0 \]

[_separable]

18633

\[ {}\left ({\mathrm e}^{y}+1\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

18635

\[ {}y \left (3+y\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

18636

\[ {}x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18637

\[ {}x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18638

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

18639

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18641

\[ {}5 x y y^{\prime }-x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18644

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18645

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

[_linear]

18647

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18727

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

18728

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18729

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

18730

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

18731

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18733

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18737

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18738

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

18739

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

18740

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18741

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

[_exact]

18742

\[ {}y-y^{\prime } x +\ln \left (x \right ) = 0 \]

[_linear]

18743

\[ {}\left (1+x y\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18744

\[ {}a \left (y^{\prime } x +2 y\right ) = x y y^{\prime } \]

[_separable]

18745

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

18746

\[ {}y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

18747

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18748

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18749

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18750

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18751

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18752

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18753

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18756

\[ {}y^{\prime } x -a y = x +1 \]

[_linear]

18757

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

18758

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

18759

\[ {}\left (x +1\right ) y^{\prime }-n y = {\mathrm e}^{x} \left (x +1\right )^{n +1} \]

[_linear]

18760

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

[_linear]

18761

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18762

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18765

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

18769

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18770

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

18771

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

18772

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x^{3}}{y^{2}} \]

[_rational, _Bernoulli]

18773

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18774

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

18775

\[ {}y^{\prime } x +\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18776

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18777

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

[_linear]

18778

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18779

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18780

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18781

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18783

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

18786

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

18787

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

18789

\[ {}y y^{\prime } = a x \]

[_separable]

18790

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

[_linear]

18791

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18792

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

18793

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18794

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18796

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18798

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18799

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18803

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

18805

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

18806

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

18821

\[ {}x y \left (y-y^{\prime } x \right ) = x +y y^{\prime } \]

[_separable]

18825

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

18827

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18839

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18841

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19047

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

19048

\[ {}\left (1+x y\right ) y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

19049

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right )+y^{2} = 0 \]

[_Bernoulli]

19050

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19051

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

19052

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19053

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

19054

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 x y = -x^{3}+x \]

[_linear]

19055

\[ {}y^{\prime } x -y-\cos \left (\frac {1}{x}\right ) = 0 \]

[_linear]

19056

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19058

\[ {}y^{\prime } = {\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \]

[_separable]

19059

\[ {}x^{2} y^{\prime }+y = 1 \]

[_separable]

19060

\[ {}2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime } = 0 \]

[_separable]

19061

\[ {}x y^{2}+x +\left (y+x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

19062

\[ {}y^{\prime } = {\mathrm e}^{x +y}+x^{2} {\mathrm e}^{y} \]

[_separable]

19064

\[ {}\frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y} = 0 \]

[_separable]

19065

\[ {}\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = \left (1+y\right ) {\mathrm e}^{x} \]

[_separable]

19067

\[ {}y^{\prime } = \frac {\sin \left (x \right )+x \cos \left (x \right )}{y \left (2 \ln \left (y\right )+1\right )} \]

[_separable]

19069

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

19070

\[ {}\left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x = 0 \]

[_separable]

19071

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

19072

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

19077

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19078

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19082

\[ {}y^{2} = \left (x y-x^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19083

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

19084

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19091

\[ {}x \left (x^{2}+3 y^{2}\right )+y \left (y^{2}+3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

19092

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19093

\[ {}y^{\prime } = \frac {2 x -y+1}{x +2 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19096

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

19097

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

19098

\[ {}x \cos \left (x \right ) y^{\prime }+y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 1 \]

[_linear]

19099

\[ {}y-x \sin \left (x^{2}\right )+y^{\prime } x = 0 \]

[_linear]

19100

\[ {}y^{\prime } x \ln \left (x \right )+y = 2 \ln \left (x \right ) \]

[_linear]

19101

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y+\sin \left (x \right ) \]

[_linear]

19102

\[ {}\left (1+x +x y^{2}\right ) y^{\prime }+y+y^{3} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

19103

\[ {}y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

19104

\[ {}y^{\prime }+3 x^{2} y = x^{5} {\mathrm e}^{x^{3}} \]

[_linear]

19106

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

19107

\[ {}y^{\prime }+\frac {2 y}{x} = \sin \left (x \right ) \]

[_linear]

19108

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

19109

\[ {}1+y+x^{2} y+\left (x^{3}+x \right ) y^{\prime } = 0 \]

[_linear]

19110

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

19113

\[ {}y^{\prime }+x = x \,{\mathrm e}^{\left (n -1\right ) y} \]

[_separable]

19114

\[ {}y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

19117

\[ {}x +y y^{\prime } = \frac {a^{2} \left (-y+y^{\prime } x \right )}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

19118

\[ {}1+4 x y+2 y^{2}+\left (1+4 x y+2 x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19119

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19120

\[ {}\left (x^{4} y^{4}+x^{2} y^{2}+x y\right ) y+\left (x^{4} y^{4}-x^{2} y^{2}+x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

19121

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19122

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

19123

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

19124

\[ {}\left (20 x^{2}+8 x y+4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+x y+y^{2}+y^{3}\right ) x y^{\prime } = 0 \]

[_rational]

19126

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19133

\[ {}y^{\prime } x +y \ln \left (y\right ) = x y \,{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

19135

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

19136

\[ {}y^{\prime } = \frac {1+x^{2}+y^{2}}{2 x y} \]

[_rational, _Bernoulli]

19137

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19139

\[ {}y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

19141

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

19142

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \]

[_separable]

19143

\[ {}x^{2}+y^{2}+x -\left (2 x^{2}+2 y^{2}-y\right ) y^{\prime } = 0 \]

[_rational]

19144

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19145

\[ {}y \left (1+\frac {1}{x}\right )+\cos \left (y\right )+\left (x +\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

19147

\[ {}y^{\prime } = \frac {x \left (2 \ln \left (x \right )+1\right )}{\sin \left (y\right )+y \cos \left (y\right )} \]

[_separable]

19148

\[ {}s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s} \]

[_separable]

19152

\[ {}x^{2}-a y = \left (a x -y^{2}\right ) y^{\prime } \]

[_exact, _rational]

19153

\[ {}y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

19154

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19155

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

19156

\[ {}y-y^{\prime } x +x^{2}+1+x^{2} \sin \left (y\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

19157

\[ {}\sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3} \]

[‘y=_G(x,y’)‘]

19158

\[ {}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19211

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

19212

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

19213

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

19214

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

19217

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = \left (x +y\right ) x \]

[_quadrature]

19218

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

19219

\[ {}x +y {y^{\prime }}^{2} = y^{\prime } \left (1+x y\right ) \]

[_quadrature]

19220

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

19222

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

19224

\[ {}\left (y^{\prime }+y+x \right ) \left (y+x +y^{\prime } x \right ) \left (y^{\prime }+2 x \right ) = 0 \]

[_quadrature]

19226

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

19237

\[ {}y = y^{\prime } \sin \left (x \right )+\cos \left (x \right ) \]

[_linear]

19263

\[ {}2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (x \cos \left (x \right )-4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+x \sin \left (2 x \right ) = 0 \]

[_quadrature]

19265

\[ {}y-y^{\prime } x = x +y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19268

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19271

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

19277

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

19279

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

19280

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

19312

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

19313

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

19509

\[ {}y-y^{\prime } x = 0 \]

[_separable]

19511

\[ {}x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-a^{2} x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

19512

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

19513

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

19514

\[ {}1+y^{2}-x y y^{\prime } = 0 \]

[_separable]

19516

\[ {}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19518

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]

[_linear]

19519

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

19520

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

19523

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19524

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19526

\[ {}y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x +x y^{2}\right ) y^{\prime }}{4} = 0 \]

[_rational]

19528

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19544

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19546

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

19547

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (y+2 x \right ) y^{\prime } = 0 \]

[_quadrature]

19560

\[ {}x y \left (y-y^{\prime } x \right ) = x +y y^{\prime } \]

[_separable]

19561

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]