# |
ODE |
CAS classification |
Solved? |
\[
{}x^{\prime \prime } = 50
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = -20
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 3 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 2 t +1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 4 \left (t +3\right )^{2}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\sqrt {t +4}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime \prime } = 50 \sin \left (5 t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 6 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )+x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (x +8\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}36 x^{2} y^{\prime \prime }+60 y^{\prime } x +\left (9 x^{3}-5\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }+24 y^{\prime } x +\left (144 x^{3}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-12 y^{\prime } x +\left (15+16 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+x^{4} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 6 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 6 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+16 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+125 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \sinh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}u^{\prime \prime }-u^{\prime }+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+5 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+w^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 y = t^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = t^{3}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 3 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y = {\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \csc \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{2} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = k^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+k^{2} x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime } = x^{2}+1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+x = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+t x^{\prime } = t^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}f^{\prime \prime }+2 f^{\prime }+5 f = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{n}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x^{n}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = \cos \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 \tanh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 8 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y}{4 x} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 16
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime } = 2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 8 x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 6 x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}r^{\prime \prime }-6 r^{\prime }+9 r = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = -4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-\omega ^{2} x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+42 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 8
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 5 x^{2}+x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 \sin \left (x \right )-4 y
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2} = -48 x
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 9 x^{2}+2 x -1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4-x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x +x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y x = 4
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}s^{\prime \prime }+2 s^{\prime }+s = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = x +2
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 x +1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }-6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }-2 y^{\prime } = x^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-3 y^{\prime } = 5 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 12 x -10
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-5 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \tan \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = -3 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x y^{\prime \prime }-5 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime }-y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\beta ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } \cos \left (x \right ) = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = -\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 4 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t y^{\prime \prime }+4 y^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = k
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 4 \sin \left (x \right )-4
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x -x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x -2 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x -3 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x -x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-y x -x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y x -x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y x -x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y x -x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x -x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+c y^{\prime }+k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\frac {x y^{\prime \prime }}{1-x}+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \left (x^{2}+3\right ) y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}a y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{2}+x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{3}+x^{2}+x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y-\sin \left (n x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+l y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-c \,x^{a} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[_Hermite] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+l x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x -{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }-2 y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+v y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}a x y^{\prime \prime }+b y^{\prime }+c y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\left (a \,x^{m}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a x -b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (3 x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}+2\right ) x y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-\left (3 x +1\right ) y^{\prime }-\left (x^{2}-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (4 a^{2} x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-v^{2}+x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (4 x^{2}+12 x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y = 0
\] |
[_Jacobi] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 x^{2} y^{\prime \prime }+32 y^{\prime } x -\left (4 x +5\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0
\] |
[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+y x -\ln \left (x \right )^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 y x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {2 y}{x \left (x -1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {y^{\prime }}{x +1}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (x +1\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (-3 x +1\right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {a y}{x^{4}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}}
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}}
\] |
[_Halm] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {c y}{\left (x -a \right )^{2} \left (x -b \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}}
\] |
[_Halm] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (x -1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (3 x +1\right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {27 x y}{16 \left (x^{3}-1\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-a \,x^{n} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+a x y^{\prime }+a y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = 0
\] |
[_Bessel] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y = 0
\] |
[[_Bessel, _modified]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-3 y^{\prime } x +n \left (n +2\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (n +m \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) x +a b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{4} y^{\prime \prime }+2 x^{2} \left (x +a \right ) y^{\prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right )^{2} y^{\prime \prime }+a y = 0
\] |
[_Halm] |
✓ |
|
\[
{}\left (x^{2}-1\right )^{2} y^{\prime \prime }+a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y = 0
\] |
[_Halm] |
✓ |
|
\[
{}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }-c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (x -b \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{6} y^{\prime \prime }-x^{5} y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = x^{2}-x -1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0
\] |
[_Laguerre] |
✓ |
|
\[
{}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } x = x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-6 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime } = -3 \sqrt {t}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{\prime }+t x^{\prime \prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime } = 3 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-12 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 12
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime } = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+3025 x = \cos \left (45 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime } = -\frac {x}{t^{2}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{\prime \prime } = \frac {4 x}{t^{2}}
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+t x^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x = t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {1}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-2 x = t^{3}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \frac {1}{1+t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\frac {x^{\prime }}{t} = a
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+58 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 4 x -8
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+2 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}z^{\prime \prime }-4 z^{\prime }+13 z = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\theta ^{\prime \prime }+4 \theta = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }-x = \frac {1}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cot \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-2 x = t^{3}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cosh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-\frac {1}{25}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = t \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = y+x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-7 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-\alpha ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = a^{2} y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 9 y
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+12 y = 7 y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}s^{\prime \prime }-a^{2} s = 1+t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 5 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 2-6 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 31
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 27 x +18
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+10 y = 10
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+6 y = -8
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y = -{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = \frac {x +1}{x -1}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = \sin \left (2 x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-3 = x
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 = \sqrt {x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{\prime }-6
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 6 x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-24 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}25 y^{\prime \prime }-10 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+29 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+37 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 36
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -200
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9 x^{4}-9
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 20
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 100
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cot \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \csc \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-30 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+20 y^{\prime }+100 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime } = 3 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }-10 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+40 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+45 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+24 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+18 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}a y^{\prime \prime }+b y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}8 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+36 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+100 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}a y^{\prime \prime }+2 b y^{\prime }+c y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 t -4
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 3-4 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime } = 3 t^{4}-2 t
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}5 y^{\prime \prime }+y^{\prime }-4 y = -3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 18
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y^{\prime } = t
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \csc \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \cot \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 2 \sinh \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+17 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \frac {1}{x^{5}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 x^{2} y^{\prime \prime }+y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}20 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}12 y^{\prime \prime }+8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = -t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 5 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}9 x^{\prime \prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+64 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+100 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+16 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+256 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}10 x^{\prime \prime }+\frac {x}{10} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+3 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+13 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+20 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ -t +2 & 1\le t <2 \\ 0 & 2\le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }-3 x^{\prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+16 x = t \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{\prime \prime }+x = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime } = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime } \left (x +2\right )^{5} = 1
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}y^{\prime \prime } = 2 x \ln \left (x \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+2 = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+25 y = \cos \left (5 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+k^{2} y = k
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 9
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime } = 8 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}7 y^{\prime \prime }-y^{\prime } = 14 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x +1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = x^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = x^{2} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y = x +\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = \left (1+\sin \left (x \right )\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = -2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 4 x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = -2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-5 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = -\frac {16 \ln \left (x \right )}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = x^{2}-2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0
\] |
[_Jacobi] |
✓ |
|
\[
{}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}4 x y^{\prime \prime }+2 y^{\prime }+y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+6 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\alpha ^{2} y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime \prime }+\lambda ^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y = \cos \left (\pi x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|