2.4.22 second order adjoint

Table 2.417: second order adjoint

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (t +3\right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

149

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

152

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

215

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

216

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

217

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

218

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

219

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

220

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

223

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

224

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

228

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

229

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

235

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

238

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

239

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

241

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

242

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

243

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

245

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

246

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

247

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

257

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

258

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

259

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

261

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

263

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

271

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

273

\[ {}y^{\prime \prime }+y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

274

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

275

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

276

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

277

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

278

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

279

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

291

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

292

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

293

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

309

\[ {}y^{\prime \prime }+2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

310

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

311

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

322

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

323

\[ {}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

324

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

325

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

326

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

327

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

328

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

329

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

330

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

331

\[ {}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

334

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

337

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

338

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

342

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

344

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

346

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

347

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

351

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

352

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

353

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

354

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

363

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

364

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

365

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

367

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

368

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

369

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

370

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

371

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

372

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

373

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

374

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

375

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

381

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

382

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

383

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

384

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

385

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

386

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

387

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

388

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

389

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

390

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

391

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

396

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

397

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

398

\[ {}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

399

\[ {}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

514

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+y x = 0 \]

[_Lienard]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

517

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (x +8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

518

\[ {}36 x^{2} y^{\prime \prime }+60 y^{\prime } x +\left (9 x^{3}-5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

519

\[ {}16 x^{2} y^{\prime \prime }+24 y^{\prime } x +\left (144 x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

520

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

521

\[ {}4 x^{2} y^{\prime \prime }-12 y^{\prime } x +\left (15+16 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

523

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

[[_Emden, _Fowler]]

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

807

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

808

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

809

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

810

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

811

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

812

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

815

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

816

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

818

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

820

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

821

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

822

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

823

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

824

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

827

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

828

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

829

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

830

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

831

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

832

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

834

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

835

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

836

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

837

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

838

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

839

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

840

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

842

\[ {}y^{\prime \prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

843

\[ {}y^{\prime \prime }+2 y = 6 x \]

[[_2nd_order, _with_linear_symmetries]]

844

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

845

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

847

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

848

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

849

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

850

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

851

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

852

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

853

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

854

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

855

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

856

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

857

\[ {}y^{\prime \prime }-2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

858

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

859

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

860

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

862

\[ {}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

863

\[ {}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

864

\[ {}x^{\prime \prime }+8 x^{\prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

866

\[ {}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

867

\[ {}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

868

\[ {}x^{\prime \prime }+10 x^{\prime }+125 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

869

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

870

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

871

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

872

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

873

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

874

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

875

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

876

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

877

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

878

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

879

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

880

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

881

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

882

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

883

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

884

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

885

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

886

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

887

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

889

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

890

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

891

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

892

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

893

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

894

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

895

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

896

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

897

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

898

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

899

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

900

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

901

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

907

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

908

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

909

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

910

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

911

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

912

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

913

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

914

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

915

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

916

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1249

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1250

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1251

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1252

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1254

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

1255

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1256

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1257

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1258

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1264

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1265

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1268

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1283

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1286

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1346

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1347

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1348

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1349

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1353

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1354

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

[[_2nd_order, _missing_x]]

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1737

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1738

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1739

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1740

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1741

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1743

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1744

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1745

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

[[_Emden, _Fowler]]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1756

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1805

\[ {}y^{\prime \prime }+9 y = \tan \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1806

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1807

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1808

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1810

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1812

\[ {}x y^{\prime \prime }+\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1813

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1814

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1817

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1819

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1820

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1} \]

[[_2nd_order, _with_linear_symmetries]]

1821

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1824

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1825

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1826

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1827

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1828

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1829

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1830

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1831

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1832

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1833

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1834

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1835

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1836

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1838

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2363

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2364

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2365

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2366

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2367

\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2368

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2369

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2370

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2371

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2372

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2376

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2377

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2378

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2379

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2380

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2381

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2402

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2404

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2406

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2407

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2412

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2545

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2558

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2559

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2560

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2562

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2563

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2564

\[ {}y^{\prime \prime }+w^{2} y = 0 \]

[[_2nd_order, _missing_x]]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2567

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2568

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2569

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2570

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2571

\[ {}6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2572

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2583

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2584

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2585

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2586

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2587

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2588

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2593

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2594

\[ {}y^{\prime \prime }+3 y = t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2595

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2596

\[ {}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2597

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1 \]

[[_2nd_order, _with_linear_symmetries]]

2598

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

2599

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2600

\[ {}y^{\prime \prime }+4 y = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2601

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2602

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2604

\[ {}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2605

\[ {}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2606

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

2608

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2609

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2992

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2993

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

2994

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

2995

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

2996

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

2997

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2998

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

2999

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3000

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3021

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3022

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3033

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

3044

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3045

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3046

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3047

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3048

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3049

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3050

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3052

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3053

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3054

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3055

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3056

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3058

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3061

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3064

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3065

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3066

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3068

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3070

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3071

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3072

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3073

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3074

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3075

\[ {}y^{\prime \prime }+y = 3 x \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3076

\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3077

\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3078

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3079

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3080

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3081

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3082

\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3083

\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3084

\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3085

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3088

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3093

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3094

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3095

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3096

\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3097

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3098

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3099

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3101

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3103

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3105

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3106

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3107

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

3108

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3109

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3110

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3111

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3112

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3113

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3117

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3118

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3119

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3120

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3121

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3122

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3123

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

[[_2nd_order, _with_linear_symmetries]]

3138

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3139

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3140

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3143

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3147

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3148

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3149

\[ {}y^{\prime \prime }-y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3150

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3151

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3152

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3153

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3154

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

3155

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3156

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

3157

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3158

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3159

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3160

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3161

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3164

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3177

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3178

\[ {}y^{\prime \prime } = k^{2} y \]

[[_2nd_order, _missing_x]]

3179

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3182

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3183

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3184

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

3186

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3187

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

[[_2nd_order, _missing_y]]

3188

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

3199

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

3217

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

3417

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3418

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3420

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3421

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3422

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3423

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

3426

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

3427

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3428

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3429

\[ {}y^{\prime \prime }-y = x^{n} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3430

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3433

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3491

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

3492

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

3493

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3496

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

3497

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

3498

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3499

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3500

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

3501

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3502

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3503

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

[[_2nd_order, _missing_x]]

3504

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3505

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _missing_x]]

3506

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3507

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

3508

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3509

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

3517

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3518

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3520

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3522

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3523

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3524

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler]]

3525

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3564

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

3629

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

3630

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

3631

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

3632

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

3640

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3641

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3644

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

3645

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

[[_2nd_order, _with_linear_symmetries]]

3649

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3650

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3651

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3652

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3653

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3657

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3659

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3660

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3662

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3665

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3666

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3667

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3668

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3669

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3670

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3671

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3672

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3673

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3674

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3675

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3676

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3677

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3678

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3679

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3680

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3681

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3682

\[ {}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3683

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3684

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3685

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3686

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3687

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3688

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3689

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3690

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3691

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3692

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3693

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3694

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3695

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3704

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3706

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3707

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3709

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3710

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3711

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3712

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3713

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3714

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3715

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3730

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3731

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3735

\[ {}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3736

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3737

\[ {}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3740

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3741

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3742

\[ {}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4158

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4159

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4160

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4161

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4162

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5476

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5477

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

5478

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5479

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5480

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5485

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

5486

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5488

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5491

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5497

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

5498

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

5500

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

5505

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5506

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5507

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5508

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5510

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

5511

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5512

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

[[_2nd_order, _with_linear_symmetries]]

5513

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5514

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5515

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5516

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

5517

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5518

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5519

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5520

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5521

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5522

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5524

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5525

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5526

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5527

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5528

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5529

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5530

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5531

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5532

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5533

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5534

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5535

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5536

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5537

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5538

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5539

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5540

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5541

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5542

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5543

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5544

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5545

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5546

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5547

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5548

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5549

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5550

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5551

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5552

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5553

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5554

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5558

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

5559

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

5569

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

5574

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

5575

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

5586

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5636

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

[[_Emden, _Fowler]]

5637

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5638

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5639

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5640

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5641

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5642

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5643

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5644

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5645

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5646

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5647

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5648

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

5649

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

5650

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

5651

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

5695

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

5696

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5697

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5698

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

5699

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

5700

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

5701

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

5702

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5703

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

5704

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5705

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

5706

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

5711

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

5712

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

[[_2nd_order, _missing_x]]

5713

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5714

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

5715

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5716

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

5717

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5718

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

5719

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

5720

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

5721

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5722

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5723

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5724

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5726

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5727

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5728

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5729

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5730

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5732

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

5733

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5734

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5735

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5736

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5737

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5738

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

[[_2nd_order, _with_linear_symmetries]]

5739

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5740

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5741

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5742

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

5747

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

5752

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler]]

5753

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5754

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

5755

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

5756

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

5757

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5758

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5759

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 6 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5761

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

5771

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

[[_2nd_order, _missing_x]]

5773

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5775

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5779

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

5780

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

5781

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5782

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5783

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5787

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5803

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

5805

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

5807

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

5809

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

5811

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5813

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5815

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5949

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

5951

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5954

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5955

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5956

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5957

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5968

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5969

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

5970

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5971

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5972

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

5973

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

5974

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5975

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6040

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

[[_2nd_order, _missing_x]]

6041

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6042

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6043

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

[[_2nd_order, _with_linear_symmetries]]

6044

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6045

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6046

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

[[_2nd_order, _with_linear_symmetries]]

6047

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

6048

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6049

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

[[_2nd_order, _with_linear_symmetries]]

6050

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6051

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6052

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6053

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6054

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6055

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6056

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6057

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6058

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6059

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6060

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6061

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6062

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

[[_2nd_order, _with_linear_symmetries]]

6064

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6065

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]
i.c.

[[_2nd_order, _missing_x]]

6066

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6067

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6068

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6069

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6070

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6071

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

6072

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6074

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6075

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6079

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6080

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6081

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6082

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6083

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6090

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6091

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6092

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6093

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6096

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6097

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6098

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6099

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

[[_2nd_order, _with_linear_symmetries]]

6100

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6101

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6102

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6134

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6135

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6136

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6137

\[ {}y^{\prime \prime }-y = 4-x \]

[[_2nd_order, _with_linear_symmetries]]

6138

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6139

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6252

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

6254

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6255

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6256

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6258

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6262

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

6264

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

6266

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6267

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

6272

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

6273

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6277

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6278

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6279

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6280

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6281

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6282

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6283

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6284

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6285

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6286

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6287

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6288

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6289

\[ {}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6290

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6291

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6292

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6294

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6296

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6297

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6298

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6301

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6302

\[ {}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6304

\[ {}y^{\prime \prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6305

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6306

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6307

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6308

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6309

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6310

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x +x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6311

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6314

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6315

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6316

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

6317

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

6318

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

6319

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6320

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6321

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6322

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6323

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6324

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6326

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6328

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6329

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6330

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6331

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6332

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

6334

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6335

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6714

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6715

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6716

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6718

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

[[_Emden, _Fowler]]

6719

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6720

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6723

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

6725

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6726

\[ {}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6728

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6729

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6730

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6731

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6734

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6735

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6753

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

6754

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6755

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

6756

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

6757

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6758

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6759

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6761

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

6763

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6771

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6772

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6773

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6774

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6776

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6777

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6778

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6781

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6782

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6787

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6793

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6817

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

6821

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6822

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

6823

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

6825

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

6848

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

6849

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6850

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

6851

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

6852

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6853

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

6854

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

6855

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6856

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6857

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6858

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6859

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6860

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6861

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6862

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6863

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6864

\[ {}y^{\prime \prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6865

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6866

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6867

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6868

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

6869

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6870

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6871

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6872

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6873

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6874

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

6886

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6887

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6893

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6900

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6901

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6902

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6903

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6904

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6905

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6906

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6907

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6910

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

6911

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

6912

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6922

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6933

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6935

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6936

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

6937

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6938

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6940

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

6941

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

6942

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

6943

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

6995

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

6996

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6998

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7000

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7013

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7014

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7040

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7143

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7147

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7172

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7173

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

7174

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7175

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

7176

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7177

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7178

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

7179

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7180

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

7181

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7182

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7183

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7184

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7185

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

7186

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

7187

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7188

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7189

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7190

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

7191

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7192

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7193

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7194

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7195

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7196

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7197

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

7198

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

7199

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

7200

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

7201

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7202

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7203

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

7204

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7205

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7206

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

7207

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7208

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

7209

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

7210

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7211

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7212

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7213

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7214

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7215

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7216

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

7217

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

7218

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7219

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7221

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7222

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7223

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7224

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7225

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7226

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7227

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7228

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7229

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7230

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7231

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7232

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7233

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7234

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

7235

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7236

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7237

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7238

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7239

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7240

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7275

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7276

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7277

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

7278

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

7279

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

[[_2nd_order, _with_linear_symmetries]]

7280

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7281

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7282

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7283

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7287

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7288

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7289

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

7290

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

7291

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

[[_2nd_order, _with_linear_symmetries]]

7292

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7293

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7294

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7295

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7296

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7297

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7298

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7303

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7304

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7306

\[ {}y^{\prime \prime } = -3 y \]
i.c.

[[_2nd_order, _missing_x]]

7455

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7457

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7459

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

7461

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

7523

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7524

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

7525

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7526

\[ {}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7527

\[ {}x y^{\prime \prime }+y^{\prime }+y x = 0 \]

[_Lienard]

7528

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

7529

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7530

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7531

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7532

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7533

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

7534

\[ {}x y^{\prime \prime }+3 y^{\prime }+y x = 0 \]

[_Lienard]

7535

\[ {}x y^{\prime \prime }-y^{\prime }+y x = 0 \]

[_Lienard]

7536

\[ {}x y^{\prime \prime }-5 y^{\prime }+y x = 0 \]

[_Lienard]

7537

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7538

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7539

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

7540

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7541

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

7542

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

7543

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7544

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7545

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7546

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7598

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

7732

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

7733

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

7736

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7738

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

[[_2nd_order, _missing_y]]

7745

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

7765

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7766

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7767

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7768

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

7842

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

7843

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7844

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

7845

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7846

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

7847

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7848

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7849

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

7850

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

7862

\[ {}x y^{\prime \prime }+y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7893

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

7941

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7942

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7943

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7944

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7988

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7989

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7990

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

7991

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7995

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

7996

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

7997

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

7998

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7999

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8001

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8002

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8003

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8005

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8008

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8031

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8036

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8037

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8038

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8041

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8042

\[ {}y^{\prime \prime }-y^{\prime } x -y x -2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8043

\[ {}y^{\prime \prime }-y^{\prime } x -y x -3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8048

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8054

\[ {}y^{\prime \prime }-y^{\prime }-y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8069

\[ {}y^{\prime \prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8071

\[ {}y^{\prime \prime }-y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8072

\[ {}y^{\prime \prime }-y x -x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8084

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8089

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8095

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

8097

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8098

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8099

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8100

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8101

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8102

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8103

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8104

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8109

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8110

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8111

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8124

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8190

\[ {}\frac {x y^{\prime \prime }}{1-x}+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8193

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

8196

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8199

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8200

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8202

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8203

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8213

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8217

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8294

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8297

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8300

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8302

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

8305

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8308

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8311

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8314

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8317

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

8318

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

8319

\[ {}y^{\prime \prime }+y^{\prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8320

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8321

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8322

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8323

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8324

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

8325

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

8326

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

8327

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8328

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

8329

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

8330

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

8331

\[ {}y^{\prime \prime }+y = 1 \]

[[_2nd_order, _missing_x]]

8332

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

8333

\[ {}y^{\prime \prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8334

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8335

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8336

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8337

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8359

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8360

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8361

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8362

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8363

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8364

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8368

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8373

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8374

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

[_Lienard]

8375

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8376

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8377

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8378

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8379

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8380

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8382

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8383

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

8390

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

8391

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10233

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

10234

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

10235

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10236

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10237

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10238

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

10239

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10241

\[ {}y^{\prime \prime }+l y = 0 \]

[[_2nd_order, _missing_x]]

10242

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10243

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10245

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10246

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

[[_Emden, _Fowler]]

10249

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10250

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10264

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10265

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10266

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

10270

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10271

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10274

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

10276

\[ {}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10278

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10280

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10281

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10282

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10284

\[ {}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10287

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10288

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10289

\[ {}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10290

\[ {}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10292

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10293

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10294

\[ {}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10302

\[ {}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10308

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10314

\[ {}4 y^{\prime \prime }+9 y x = 0 \]

[[_Emden, _Fowler]]

10318

\[ {}a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10319

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10321

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10322

\[ {}x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10323

\[ {}x y^{\prime \prime }+y^{\prime }+l x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10325

\[ {}x y^{\prime \prime }-y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10326

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10328

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x -{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10329

\[ {}x y^{\prime \prime }+2 y^{\prime }+a x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10330

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0 \]

[[_Emden, _Fowler]]

10331

\[ {}x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10332

\[ {}x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

10333

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10334

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

[[_Emden, _Fowler]]

10339

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

10340

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10347

\[ {}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10349

\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10350

\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10351

\[ {}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10353

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10354

\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10355

\[ {}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10357

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10358

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10361

\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10363

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10364

\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10368

\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

10369

\[ {}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10374

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

10375

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

[[_Emden, _Fowler]]

10376

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

10377

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10378

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10379

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10380

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10381

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10383

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10386

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10387

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10388

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10389

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10390

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

10392

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10393

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10394

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10395

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (a \,x^{m}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10396

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

10397

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a x -b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10398

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10402

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10404

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10406

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10407

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10409

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10410

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10411

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10412

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10413

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10414

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10415

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

10417

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10419

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10420

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10421

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10422

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10424

\[ {}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10426

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10427

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10429

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10430

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10431

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10432

\[ {}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10436

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10437

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+2\right ) x y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10439

\[ {}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10450

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10451

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10452

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10453

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10455

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10456

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10457

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10461

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0 \]

[[_2nd_order, _missing_y]]

10462

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10464

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

10465

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

10469

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (3 x +1\right ) y^{\prime }-\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10470

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10477

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10478

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10480

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10481

\[ {}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10484

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10489

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10491

\[ {}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10493

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10494

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10497

\[ {}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10498

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

10499

\[ {}4 x^{2} y^{\prime \prime }+\left (4 a^{2} x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10501

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-v^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10503

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10504

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10507

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (4 x^{2}+12 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10508

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10509

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10510

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10511

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10513

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10514

\[ {}9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y = 0 \]

[_Jacobi]

10515

\[ {}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10516

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x -\left (4 x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10517

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10519

\[ {}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10524

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10525

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10526

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

[_Gegenbauer]

10527

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10530

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10533

\[ {}x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10534

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+y x -\ln \left (x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10536

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10538

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10541

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10545

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10546

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10547

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10548

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10549

\[ {}y^{\prime \prime } = -\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10550

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10552

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10554

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10557

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10558

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x +1}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10562

\[ {}y^{\prime \prime } = -\frac {\left (-3 x +1\right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10563

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10564

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10566

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10568

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

10571

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10572

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10573

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]

[[_Emden, _Fowler]]

10576

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10577

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10578

\[ {}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10579

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10580

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10581

\[ {}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \]

[[_2nd_order, _with_linear_symmetries]]

10584

\[ {}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10587

\[ {}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10591

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}} \]

[_Halm]

10592

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10595

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10596

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10602

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10603

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \]

[[_Emden, _Fowler]]

10604

\[ {}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10605

\[ {}y^{\prime \prime } = \frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10606

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10608

\[ {}y^{\prime \prime } = \frac {c y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10611

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \]

[_Halm]

10612

\[ {}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

10613

\[ {}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \]

[[_Emden, _Fowler]]

10616

\[ {}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10620

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10621

\[ {}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}} \]

[[_Emden, _Fowler]]

10622

\[ {}y^{\prime \prime } = -\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \]

[[_Emden, _Fowler]]

10623

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

10625

\[ {}y^{\prime \prime } = \frac {\left (3 x +1\right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10626

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \]

[[_Emden, _Fowler]]

10630

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

10631

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

10632

\[ {}y^{\prime \prime } = -\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10647

\[ {}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10655

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10658

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10671

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10672

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10673

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11723

\[ {}y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _missing_x]]

11724

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11725

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11727

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11729

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

11733

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

11734

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11736

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11737

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11746

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11747

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11748

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11749

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11752

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11755

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11756

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11757

\[ {}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11758

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11760

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11761

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11762

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11763

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11764

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11765

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11766

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11768

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11778

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11779

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11783

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11784

\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

11785

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11789

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

11791

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11794

\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11797

\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11798

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11802

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11803

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11804

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11809

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11810

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11811

\[ {}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11816

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11818

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11832

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

11833

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11834

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11835

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11838

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11840

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11845

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

11846

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11847

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11848

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

11849

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y = 0 \]

[[_Bessel, _modified]]

11850

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11851

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11852

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11854

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11859

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11862

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11873

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11874

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11877

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-3 y^{\prime } x +n \left (n +2\right ) y = 0 \]

[_Gegenbauer]

11884

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11896

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11899

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11900

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11904

\[ {}x^{3} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11911

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11914

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11915

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (n +m \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11933

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

11935

\[ {}x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) x +a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11936

\[ {}x^{4} y^{\prime \prime }+2 x^{2} \left (x +a \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11938

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11942

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+a y = 0 \]

[_Halm]

11943

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11944

\[ {}\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_Emden, _Fowler]]

11945

\[ {}\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11946

\[ {}4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y = 0 \]

[_Halm]

11947

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11951

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11952

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11955

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }-c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11956

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (x -b \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11957

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y = 0 \]

[[_Emden, _Fowler]]

11960

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11961

\[ {}x^{6} y^{\prime \prime }-x^{5} y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

11986

\[ {}\left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11987

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11988

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11994

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11995

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11996

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11999

\[ {}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12003

\[ {}y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12010

\[ {}y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12018

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12141

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

12142

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

12152

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12154

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12155

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

12157

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12159

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12160

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12161

\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12162

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12163

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

12164

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12168

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12172

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12173

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12174

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12176

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12181

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12182

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12184

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12188

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = x^{2}-x -1 \]

[[_2nd_order, _with_linear_symmetries]]

12189

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12190

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12191

\[ {}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12192

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12194

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12195

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12196

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12198

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12199

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12200

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

12201

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12202

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12204

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12205

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12206

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12207

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

12212

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

12213

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

12222

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12223

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12226

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12235

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

12238

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12240

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

12250

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

12254

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

12255

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

12260

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

12265

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

12294

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

12318

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

12334

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12335

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12336

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12337

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12338

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12339

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12340

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12341

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12342

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12343

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12344

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12345

\[ {}x^{\prime \prime }-12 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12346

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12347

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12348

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12349

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12350

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

12351

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12352

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

[[_2nd_order, _missing_x]]

12353

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12354

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12355

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12356

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12357

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12358

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12359

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12360

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12361

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12362

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12363

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

12364

\[ {}x^{\prime \prime }+x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12365

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12366

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12367

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12368

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12369

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12370

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12371

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

12372

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12374

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12375

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12376

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

[[_Emden, _Fowler]]

12377

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

[[_Emden, _Fowler]]

12378

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12379

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12380

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

12381

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12382

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

12385

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12386

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12387

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12388

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12389

\[ {}x^{\prime \prime }+x = \frac {1}{1+t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12390

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12391

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

12392

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

12393

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12469

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

12470

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12471

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12476

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

12481

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12483

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12486

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12489

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12611

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12612

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12614

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

12615

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12616

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12617

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12618

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

12627

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12628

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

12629

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

12630

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

12631

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

12632

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

12635

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

12636

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

12637

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

12638

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

12639

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

12640

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

12653

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12654

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12655

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12656

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12657

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12658

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12659

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12660

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12662

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12663

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12664

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12665

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12666

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12673

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12674

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12675

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12676

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12677

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12678

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

12679

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12680

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12685

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

[[_2nd_order, _linear, _nonhomogeneous]]

12686

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12693

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12694

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12697

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12698

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12700

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12701

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12702

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12708

\[ {}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12709

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12710

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12713

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12714

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12715

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12716

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12717

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12727

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12728

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12729

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12730

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12731

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12732

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12733

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12734

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12735

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12736

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12737

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12738

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12739

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12740

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12741

\[ {}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12742

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12743

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12744

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12745

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12746

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

12747

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12748

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

12749

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12750

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12751

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12753

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

12754

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12755

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12756

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12757

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12758

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

12759

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12760

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12761

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12762

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

12766

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

12767

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

12768

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12770

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12772

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12773

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12774

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

12775

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12776

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12777

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12778

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12779

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12780

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12781

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12912

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12913

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12914

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12915

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12916

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12917

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12918

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12919

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12920

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12921

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12922

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12923

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12924

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12925

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12926

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12927

\[ {}x^{\prime \prime }-4 x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12928

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

12929

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12930

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

12931

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12932

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12933

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12934

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

12935

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12936

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12937

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

12938

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12939

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12940

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

12952

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

12953

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12954

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12955

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12958

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12959

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

12960

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

12961

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

12962

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

12963

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

12964

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

12965

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

12966

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

12967

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

12968

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

13063

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13065

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13066

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13067

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13069

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13077

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13080

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13081

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13084

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13085

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13087

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13088

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13093

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13097

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13103

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13120

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

13135

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13142

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13144

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

13152

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13155

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13156

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13158

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13159

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13163

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13165

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13166

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13173

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13174

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

13175

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13176

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13177

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13180

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13249

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13254

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

13255

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

13256

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

[[_2nd_order, _missing_x]]

13258

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13294

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13295

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13296

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

13298

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13299

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13308

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

13309

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

13310

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

13311

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

13312

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

13313

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

[[_2nd_order, _missing_x]]

13321

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13322

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13323

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

13390

\[ {}y^{\prime \prime } = a^{2} y \]

[[_2nd_order, _missing_x]]

13392

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

13394

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

13399

\[ {}y^{\prime \prime } = 9 y \]

[[_2nd_order, _missing_x]]

13400

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13401

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

13402

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

13403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

13404

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

13405

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

13406

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

13407

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13416

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

[[_2nd_order, _with_linear_symmetries]]

13417

\[ {}s^{\prime \prime }-a^{2} s = 1+t \]

[[_2nd_order, _with_linear_symmetries]]

13418

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13419

\[ {}y^{\prime \prime }-y = 5 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

13420

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13421

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

13422

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

13423

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

13424

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13425

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13429

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13430

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13431

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13432

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13433

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13440

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13443

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13472

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13474

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13475

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

13476

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13482

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

13485

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

13486

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13489

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

13490

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13491

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

13497

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

13499

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

13502

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13503

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13504

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13505

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13507

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13508

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13509

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13510

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13511

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13644

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

13645

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

13648

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

13649

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13650

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

13652

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13654

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

13655

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

13656

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13657

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13658

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

13668

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

14024

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

[[_2nd_order, _missing_x]]

14025

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

14055

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14056

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14057

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14058

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14059

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14060

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14061

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14062

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14063

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14064

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14065

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14066

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14067

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14068

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14071

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14072

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14073

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14077

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14078

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]
i.c.

[[_2nd_order, _missing_x]]

14079

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

14080

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]
i.c.

[[_2nd_order, _missing_x]]

14081

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]
i.c.

[[_2nd_order, _missing_x]]

14082

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14083

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14084

\[ {}y^{\prime \prime }+2 y = -3 \]
i.c.

[[_2nd_order, _missing_x]]

14085

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14086

\[ {}y^{\prime \prime }+9 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

14087

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14088

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14091

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14092

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14093

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14094

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14095

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14096

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14097

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14098

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14099

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14100

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14101

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14102

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14103

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14104

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14105

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14106

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14107

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14108

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14109

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14110

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14112

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14113

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14114

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14115

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14116

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14117

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14118

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14119

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14120

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14146

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14147

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

14149

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14150

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14160

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14161

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

14169

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

14371

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

14372

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

14373

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14374

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

14375

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

14376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14383

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

14385

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

14393

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

14399

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

14403

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

14405

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14406

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

14407

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

14408

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

14411

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

14431

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14458

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14459

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14460

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14461

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14462

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14463

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14464

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14466

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14467

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14468

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14471

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14472

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14473

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14474

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14477

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

14478

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

[[_2nd_order, _missing_x]]

14479

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

14480

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

14481

\[ {}4 y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14482

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

14483

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14484

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14485

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14486

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14487

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14488

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14489

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

14490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14491

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14492

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14493

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

14494

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

14495

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14496

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14497

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14498

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14499

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14500

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14501

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

14502

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

14503

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

14504

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

[[_2nd_order, _missing_x]]

14505

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

14506

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14507

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14508

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14509

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14510

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14512

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14513

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14514

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14541

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14542

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14543

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14544

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14545

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14546

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

14547

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

14548

\[ {}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0 \]

[[_Emden, _Fowler]]

14549

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

14550

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

14551

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

14552

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14553

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14554

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

[[_Emden, _Fowler]]

14555

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14556

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14557

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

14558

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

14559

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14560

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14561

\[ {}x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y = 0 \]
i.c.

[[_Emden, _Fowler]]

14562

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14563

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

14564

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

14573

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14574

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14575

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14576

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14577

\[ {}y^{\prime \prime }-9 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

14578

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14579

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14580

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14581

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14583

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

14584

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

14585

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14586

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14587

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

14588

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

14589

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

14590

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14591

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

14592

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

14593

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

14594

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

14595

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _with_linear_symmetries]]

14596

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

14597

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

14598

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14599

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14600

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14601

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

14602

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14603

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14604

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

[[_2nd_order, _missing_x]]

14605

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14606

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

14607

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

[[_2nd_order, _linear, _nonhomogeneous]]

14608

\[ {}y^{\prime \prime }+9 y = x^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14609

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14611

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14612

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

14613

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14614

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14615

\[ {}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14616

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

14617

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

14618

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

14619

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14620

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14621

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14622

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14623

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

14624

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

14625

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14626

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14627

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14628

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14629

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

[[_2nd_order, _missing_x]]

14630

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

14631

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

[[_2nd_order, _with_linear_symmetries]]

14632

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14633

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14634

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14635

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14636

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14637

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14638

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14639

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

[[_2nd_order, _with_linear_symmetries]]

14640

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14641

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14642

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14643

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14644

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14645

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14646

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14647

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14648

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14663

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14664

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14665

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14666

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14667

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

14668

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

14671

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

14672

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14673

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

14674

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14675

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

14676

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14677

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14678

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14679

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14680

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14681

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14682

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

14683

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14684

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

14685

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14686

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14687

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14688

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14689

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14697

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

14698

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

14699

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14700

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

14701

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

14702

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

14703

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

14705

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

14706

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

14707

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14708

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

14710

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

14711

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

14713

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14714

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

14715

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0 \]

[[_Emden, _Fowler]]

14716

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

14717

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14718

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

14720

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14721

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14723

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

14724

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

14725

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

14726

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

14727

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14728

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14729

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14730

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14731

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

14732

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14733

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14734

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

14735

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14736

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14737

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14739

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

14740

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14741

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14742

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14745

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14746

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14943

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14947

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14955

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

14956

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

14957

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

14958

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14959

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

14962

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

14963

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

14984

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14985

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14988

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

14997

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

15006

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

15007

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

15008

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler]]

15009

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15010

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15011

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

15019

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15020

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15163

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15339

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15341

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

15342

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15344

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15345

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15346

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15347

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15348

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

15349

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

15350

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

15351

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15362

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

15363

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

15368

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

15369

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

15370

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15371

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

15372

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

15373

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15374

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15375

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15376

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

15377

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

15378

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

15379

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15380

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

15381

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15382

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15383

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15384

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15385

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15386

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15387

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15388

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15389

\[ {}y^{\prime \prime }+36 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15390

\[ {}y^{\prime \prime }+100 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15391

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15392

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15393

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15394

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15395

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15396

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15397

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15398

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15399

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15400

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15401

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

15402

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

15403

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

15404

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

15405

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

15406

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

15407

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

15408

\[ {}y^{\prime \prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

15409

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15412

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15413

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

15414

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

[[_2nd_order, _with_linear_symmetries]]

15415

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

15416

\[ {}y^{\prime \prime }-y = 2 t -4 \]

[[_2nd_order, _with_linear_symmetries]]

15417

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15418

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

15419

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15420

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15421

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

[[_2nd_order, _linear, _nonhomogeneous]]

15422

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15423

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

15424

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15425

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

[[_2nd_order, _missing_x]]

15426

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

[[_2nd_order, _missing_x]]

15427

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

[[_2nd_order, _with_linear_symmetries]]

15428

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

[[_2nd_order, _with_linear_symmetries]]

15429

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

[[_2nd_order, _with_linear_symmetries]]

15430

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15431

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15432

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15433

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

15434

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15435

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15436

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15437

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15438

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

15439

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15440

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15441

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

15442

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

15443

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

15444

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

15445

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

15446

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

15447

\[ {}y^{\prime \prime }-y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

15449

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]
i.c.

[[_2nd_order, _missing_x]]

15451

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

15454

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

15455

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

15456

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15457

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

15458

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

15459

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15460

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15461

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15468

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15470

\[ {}y^{\prime \prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

15471

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

15472

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

15473

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15474

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15475

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15476

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15477

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15478

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15479

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15480

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15481

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15482

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15483

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15484

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15485

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15486

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15487

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15488

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15489

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15490

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15491

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15492

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15493

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15494

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15495

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15496

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15497

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15498

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15499

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15500

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15501

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15502

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15503

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15504

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15505

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15506

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15507

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15508

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15511

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15512

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15515

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15516

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15517

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

15518

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15519

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15522

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15526

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15602

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15603

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15604

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

15605

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

15606

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

15607

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15608

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

15609

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15610

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

15611

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15612

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15613

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15622

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

15623

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15626

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

15627

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15628

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

15632

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15633

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15634

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15635

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15640

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15641

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15642

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15643

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15644

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15645

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15646

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15651

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15652

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15653

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15654

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15655

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15656

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15658

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15660

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15661

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15668

\[ {}6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15720

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15721

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

15722

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

15725

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15726

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

15727

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15728

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

15729

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

[[_2nd_order, _missing_x]]

15730

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

15731

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

15732

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

15733

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15737

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

[[_2nd_order, _with_linear_symmetries]]

15738

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

15739

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

15740

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15741

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15742

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

[[_2nd_order, _missing_y]]

15743

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

15744

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

15745

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15746

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15751

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15752

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15753

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15754

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15755

\[ {}y^{\prime \prime }-4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15756

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15757

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15758

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15759

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15760

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15761

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15762

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15763

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15764

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15765

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15766

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

15767

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

15768

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

15769

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

15770

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15771

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15772

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

15773

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15774

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

15775

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

15785

\[ {}4 x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15786

\[ {}9 x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15787

\[ {}x^{\prime \prime }+64 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15788

\[ {}x^{\prime \prime }+100 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15789

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15790

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15791

\[ {}x^{\prime \prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15792

\[ {}x^{\prime \prime }+256 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15793

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15794

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15795

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15796

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15797

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15798

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15799

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15800

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15803

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ -t +2 & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15805

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15806

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15807

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15808

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15822

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

15823

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

15824

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15825

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

16068

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16071

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16073

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16074

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

[[_2nd_order, _missing_x]]

16079

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16080

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16081

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16082

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16083

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16084

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

16085

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16086

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16097

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16114

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16115

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

16117

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16118

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16120

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

16122

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

16126

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16136

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16137

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16138

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16139

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16140

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16141

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

16142

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16143

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16144

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16145

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16146

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16147

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16148

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16149

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16150

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16151

\[ {}y^{\prime \prime }+k^{2} y = k \]

[[_2nd_order, _missing_x]]

16172

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

[[_2nd_order, _missing_x]]

16173

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

16174

\[ {}y^{\prime \prime }+9 y = 9 \]

[[_2nd_order, _missing_x]]

16180

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16181

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

16182

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

16183

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

16184

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

16185

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

16186

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

16187

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16188

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

16189

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16190

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16191

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16192

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16193

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16194

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16195

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16196

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

16197

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16198

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16199

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16200

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16201

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16204

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16206

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16207

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16211

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16212

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16213

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

16214

\[ {}y^{\prime \prime }-y = x +\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16215

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16218

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16219

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

16220

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

16221

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16222

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16223

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16224

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16225

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16226

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16228

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

16230

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16231

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16232

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16233

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16234

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16235

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16236

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16237

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16238

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

16239

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16240

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16242

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16244

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

16246

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16251

\[ {}y^{\prime \prime }+y = -2 x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16252

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16253

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16254

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16255

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16256

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

16257

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16258

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16259

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16260

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16263

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

16269

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16270

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16271

\[ {}y^{\prime \prime }-y = 1 \]

[[_2nd_order, _missing_x]]

16272

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16273

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16274

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16275

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16278

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16279

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16280

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16281

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

16282

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16283

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16284

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16291

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16292

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = x^{2}-2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

16293

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16294

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16295

\[ {}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16296

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

16297

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16298

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

16299

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

16310

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16311

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

16312

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16313

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16314

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16315

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16316

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16317

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

16319

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

16320

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

16321

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

16322

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

16323

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[[_2nd_order, _missing_y]]

16324

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16331

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16332

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

16333

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

16334

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

16342

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16343

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16344

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16347

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16348

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16350

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16351

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16352

\[ {}y^{\prime \prime }+y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

16353

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16354

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16357

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16378

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16379

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16380

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16381

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16382

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16383

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16384

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

16385

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16386

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16387

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16388

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16390

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]