6.166 Problems 16501 to 16600

Table 6.331: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

16501

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

16502

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

16503

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

16504

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

16505

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16507

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

16508

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

16509

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

16510

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

16511

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

16512

\[ {}y^{\prime \prime }+y = 0 \]

16513

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

16514

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

16515

\[ {}\left (3 x +2\right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

16516

\[ {}\left (1+3 x \right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

16517

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

16518

\[ {}y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

16519

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16520

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

16521

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]

16522

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16523

\[ {}y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

16524

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

16525

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

16526

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

16527

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

16528

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

16529

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

16530

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

16531

\[ {}y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right ) \]

16532

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

16533

\[ {}x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

16534

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16535

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

16536

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

16537

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

16538

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

16539

\[ {}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

16540

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

16541

\[ {}x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

16542

\[ {}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

16543

\[ {}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

16544

\[ {}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

16545

\[ {}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

16546

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

16547

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16548

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

16549

\[ {}y^{\prime \prime }+x y = 0 \]

16550

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

16551

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

16552

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

16553

\[ {}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

16554

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

16555

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

16556

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

16557

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16561

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16562

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16572

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

16573

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

16574

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

16575

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16578

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16579

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

16581

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

16582

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

16583

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

16584

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

16585

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

16586

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

16587

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

16588

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16593

\[ {}y^{\prime \prime }-4 y = t \]

16594

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

16595

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

16596

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]

16597

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16598

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

16599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16600

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]