6.163 Problems 16201 to 16300

Table 6.325: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16201

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16202

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16203

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

16204

\[ {} y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

16205

\[ {} y^{\prime \prime }+3 y^{\prime } = 18 \]

16206

\[ {} y^{\prime \prime }-y = 4 \]

16207

\[ {} y^{\prime \prime }-4 y = 32 t \]

16208

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]

16209

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 3 t \]

16210

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]

16211

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]

16212

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]

16213

\[ {} y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]

16214

\[ {} y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]

16215

\[ {} y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]

16216

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

16217

\[ {} y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

16218

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16219

\[ {} y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ -2 \pi +2 t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16220

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16221

\[ {} y^{\prime }-4 y = t^{2} \]

16222

\[ {} y^{\prime }+y = \cos \left (2 t \right ) \]

16223

\[ {} y^{\prime }-y = {\mathrm e}^{4 t} \]

16224

\[ {} y^{\prime }+4 y = {\mathrm e}^{-4 t} \]

16225

\[ {} y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

16226

\[ {} y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

16227

\[ {} x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

16228

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

16229

\[ {} y^{\prime \prime }+4 y = 1 \]

16230

\[ {} y^{\prime \prime }+16 y^{\prime } = t \]

16231

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

16232

\[ {} y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

16233

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

16234

\[ {} y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16235

\[ {} y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

16236

\[ {} y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

16237

\[ {} y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

16238

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

16239

\[ {} y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

16240

\[ {} y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

16241

\[ {} y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

16242

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

16243

\[ {} y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

16244

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

16245

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16246

\[ {} y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

16247

\[ {} y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

16248

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

16249

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

16250

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

16251

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

16252

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

16253

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

16254

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

16255

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

16256

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

16257

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

16258

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

16259

\[ {} y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16260

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

16261

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

16262

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

16263

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16264

\[ {} y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

16265

\[ {} y^{\prime \prime }+4 y = \tan \left (t \right ) \]

16266

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

16267

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16268

\[ {} y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

16269

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

16270

\[ {} y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

16271

\[ {} y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

16272

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

16273

\[ {} y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

16274

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

16275

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16276

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16277

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16278

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

16279

\[ {} y^{\prime \prime }+4 y = f \left (t \right ) \]

16280

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16281

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16282

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16283

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16284

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16285

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16286

\[ {} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16287

\[ {} \left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16288

\[ {} y^{\prime \prime \prime } = 0 \]

16289

\[ {} y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

16290

\[ {} 8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16291

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

16292

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

16293

\[ {} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16294

\[ {} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16295

\[ {} y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

16296

\[ {} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

16297

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

16298

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

16299

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16300

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]