6.162 Problems 16101 to 16200

Table 6.323: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16101

\[ {} y^{\prime \prime }+9 y = 0 \]

16102

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16103

\[ {} y^{\prime \prime }+9 y = 0 \]

16104

\[ {} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

16105

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

16106

\[ {} y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

16107

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16108

\[ {} y^{\prime \prime }+16 y = 0 \]

16109

\[ {} y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16110

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

16111

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16112

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16113

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16114

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16115

\[ {} y^{\prime \prime }+9 y = 0 \]

16116

\[ {} y^{\prime \prime }+49 y = 0 \]

16117

\[ {} t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

16118

\[ {} t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

16119

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

16120

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

16121

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16122

\[ {} t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

16123

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

16124

\[ {} t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

16125

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16126

\[ {} y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16127

\[ {} y^{\prime \prime } = 0 \]

16128

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

16129

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

16130

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16131

\[ {} y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

16132

\[ {} y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16133

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16134

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

16135

\[ {} y^{\prime \prime }+16 y = 0 \]

16136

\[ {} y^{\prime \prime }+8 y = 0 \]

16137

\[ {} y^{\prime \prime }+7 y = 0 \]

16138

\[ {} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16139

\[ {} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16140

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16141

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16142

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

16143

\[ {} 3 y^{\prime \prime }-y^{\prime } = 0 \]

16144

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16145

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16146

\[ {} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16147

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16148

\[ {} y^{\prime \prime }+36 y = 0 \]

16149

\[ {} y^{\prime \prime }+100 y = 0 \]

16150

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16151

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16152

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16153

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16154

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

16155

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

16156

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

16157

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

16158

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16159

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16160

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16161

\[ {} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

16162

\[ {} t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

16163

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16164

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16165

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16166

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16167

\[ {} y^{\prime \prime }-16 y = 0 \]

16168

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16169

\[ {} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

16170

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

16171

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16172

\[ {} y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

16173

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

16174

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

16175

\[ {} y^{\prime \prime }-y = 2 t -4 \]

16176

\[ {} y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

16177

\[ {} y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

16178

\[ {} y^{\prime \prime }+y = \cos \left (2 t \right ) \]

16179

\[ {} y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

16180

\[ {} y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

16181

\[ {} y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

16182

\[ {} y^{\prime \prime } = 3 t^{4}-2 t \]

16183

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

16184

\[ {} y^{\prime \prime }+y^{\prime }-2 y = -1 \]

16185

\[ {} 5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

16186

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

16187

\[ {} 16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

16188

\[ {} y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

16189

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

16190

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

16191

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

16192

\[ {} y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

16193

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

16194

\[ {} y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

16195

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

16196

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

16197

\[ {} y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

16198

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

16199

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

16200

\[ {} y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]