|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+10 y^{\prime }+24 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+6 y^{\prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+t y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+6 y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+10 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+49 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} a y^{\prime \prime }+b y^{\prime }+c y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t y^{\prime \prime }+2 y^{\prime }+16 t y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+b y^{\prime }+c y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+8 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+5 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 8 y^{\prime \prime }+6 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{\prime \prime }+4 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+100 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 y^{\prime \prime }+5 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 9 y^{\prime \prime }+6 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} a y^{\prime \prime }+2 b y^{\prime }+c y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+6 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-6 y^{\prime }-16 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-16 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = 2 t -4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+y = t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime } = 3-4 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = \cos \left (2 t \right )+t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 3 t^{4}-2 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }-2 y = -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 5 y^{\prime \prime }+y^{\prime }-4 y = -3
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-8 y = 32 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+26 y = -338 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t}
\]
|
✓ |
✓ |
✗ |
|