# |
ODE |
Mathematica |
Maple |
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
✗ |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime } = x \left (1+x \right )
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\] |
✓ |
✗ |
|
\[
{}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime } = y^{\prime } y^{2}+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\] |
✗ |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3}
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{3}
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = x {y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = -{\mathrm e}^{-2 y}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = -{\mathrm e}^{-2 y}
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime } = \sin \left (2 y\right )
\] |
✗ |
✗ |
|
\[
{}2 y^{\prime \prime } = \sin \left (2 y\right )
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime } = {y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 1+{y^{\prime }}^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right )
\] |
✓ |
✓ |
|
\[
{}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}\left (y y^{\prime \prime }+{y^{\prime }}^{2}+1\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\] |
✓ |
✓ |
|
\[
{}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\] |
✓ |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right )
\] |
✓ |
✓ |
|
\[
{}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\] |
✗ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\] |
✗ |
✓ |
|
\[
{}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1
\] |
✓ |
✓ |
|
\[
{}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime } = 1
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime } = x
\] |
✗ |
✗ |
|
\[
{}y^{2} y^{\prime \prime } = x
\] |
✗ |
✓ |
|
\[
{}3 y y^{\prime \prime } = \sin \left (x \right )
\] |
✗ |
✗ |
|
\[
{}3 y y^{\prime \prime }+y = 5
\] |
✓ |
✓ |
|
\[
{}a y y^{\prime \prime }+b y = c
\] |
✓ |
✓ |
|
\[
{}a y^{2} y^{\prime \prime }+b y^{2} = c
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y y^{\prime } = 2 x
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x
\] |
✗ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0
\] |
✗ |
✗ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = A y^{{2}/{3}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{y} = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = x
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = x
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime }+y^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } y^{\prime }+y^{n} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0
\] |
✓ |
✓ |
|
\[
{}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0
\] |
✓ |
✓ |
|