5.14.11 Problems 1001 to 1100

Table 5.869: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

18802

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

18803

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

18804

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

18805

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3} = 0 \]

18806

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

18807

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

18808

\[ {}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \]

18809

\[ {}4 y = x^{2}+{y^{\prime }}^{2} \]

18810

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

18811

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

18812

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

18813

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

18814

\[ {}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

18815

\[ {}y^{2}+x y y^{\prime }-x^{2} {y^{\prime }}^{2} = 0 \]

18816

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

18817

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

18818

\[ {}x^{2} \left (-x y^{\prime }+y\right ) = y {y^{\prime }}^{2} \]

18819

\[ {}y = x y^{\prime }+\arcsin \left (y^{\prime }\right ) \]

18820

\[ {}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

18823

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0 \]

18824

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

18825

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{3} y^{\prime }+x^{3} \]

18826

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

18827

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

18828

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

18829

\[ {}\left (x y^{\prime }-y\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

18830

\[ {}\left (x y^{\prime }-y\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

18831

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

18832

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

18833

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

18834

\[ {}y^{2} \left (1-{y^{\prime }}^{2}\right ) = b \]

18835

\[ {}\left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

18836

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

18838

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

18839

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

18840

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

18841

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

18842

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

18843

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

18844

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

18845

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

18846

\[ {}y = x y^{\prime }+\frac {m}{y^{\prime }} \]

18847

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

18848

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

18849

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

18851

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2}+x^{3} = 0 \]

18852

\[ {}\left (1+y^{\prime }\right )^{3} = \frac {7 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}}{4 a} \]

18853

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = r^{2} \]

18854

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

18855

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

18856

\[ {}a {y^{\prime }}^{3} = 27 y \]

18857

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

18858

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

18859

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = m^{2} \]

18860

\[ {}y = x y^{\prime }+\sqrt {b^{2}+a^{2} y^{\prime }} \]

18861

\[ {}y = x y^{\prime }-{y^{\prime }}^{2} \]

18862

\[ {}4 {y^{\prime }}^{2} = 9 x \]

18863

\[ {}4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

18864

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = 12 y {y^{\prime }}^{2} \]

18865

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-b^{2} = 0 \]

18866

\[ {}\left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

19127

\[ {}\frac {x +y y^{\prime }}{x y^{\prime }-y} = \sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}} \]

19140

\[ {}{x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \]

19211

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

19212

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

19213

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

19214

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

19215

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2} \]

19216

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

19217

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = x \left (x +y\right ) \]

19218

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

19219

\[ {}x +y {y^{\prime }}^{2} = y^{\prime } \left (x y+1\right ) \]

19220

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

19221

\[ {}{y^{\prime }}^{3}-a \,x^{4} = 0 \]

19222

\[ {}{y^{\prime }}^{2}+x y^{\prime }+y y^{\prime }+x y = 0 \]

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (y^{2}+x y+x^{2}\right )+x y \left (x +y\right ) = 0 \]

19224

\[ {}\left (y^{\prime }+y+x \right ) \left (x y^{\prime }+y+x \right ) \left (y^{\prime }+2 x \right ) = 0 \]

19225

\[ {}x^{2} {y^{\prime }}^{3}+y \left (1+x^{2} y\right ) {y^{\prime }}^{2}+y^{\prime } y^{2} = 0 \]

19226

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x = 0 \]

19228

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

19229

\[ {}y = 3 x +a \ln \left (y^{\prime }\right ) \]

19230

\[ {}{y^{\prime }}^{2}-y y^{\prime }+x = 0 \]

19231

\[ {}y = x +a \arctan \left (y^{\prime }\right ) \]

19232

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

19233

\[ {}y = x {y^{\prime }}^{2}+y^{\prime } \]

19234

\[ {}x {y^{\prime }}^{2}+a x = 2 y y^{\prime } \]

19235

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

19236

\[ {}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

19238

\[ {}y = \ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) \]

19239

\[ {}x = y y^{\prime }-{y^{\prime }}^{2} \]

19240

\[ {}\left (2 x -b \right ) y^{\prime } = y-a y {y^{\prime }}^{2} \]

19241

\[ {}x = y+a \ln \left (y^{\prime }\right ) \]

19242

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime } = y \]

19243

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

19244

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

19245

\[ {}y = x y^{\prime }+\frac {a}{y^{\prime }} \]

19246

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

19247

\[ {}y = x y^{\prime }+a y^{\prime } \left (1-y^{\prime }\right ) \]