6.65 Problems 6401 to 6500

Table 6.129: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6401

\[ {} x^{2} y^{\prime \prime } = 6 y-4 x^{2} y^{2}+x^{4} {y^{\prime }}^{2} \]

6402

\[ {} a \left (x y^{\prime }-y\right )^{2}+x^{2} y^{\prime \prime } = b \,x^{2} \]

6403

\[ {} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b \]

6404

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6405

\[ {} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \]

6406

\[ {} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y \]

6407

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

6408

\[ {} 2 y+a y^{3}+9 x^{2} y^{\prime \prime } = 0 \]

6409

\[ {} -x^{2} y^{\prime }+x^{3} y^{\prime \prime } = -x^{2}+3 \]

6410

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6411

\[ {} x^{3} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{2} \]

6412

\[ {} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0 \]

6413

\[ {} x^{4} y^{\prime \prime } = -4 y^{2}+x \left (x^{2}+2 y\right ) y^{\prime } \]

6414

\[ {} x^{4} y^{\prime \prime } = -4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right ) \]

6415

\[ {} \left (x y^{\prime }-y\right )^{3}+x^{4} y^{\prime \prime } = 0 \]

6416

\[ {} y^{b}+x^{a} y^{\prime \prime } = 0 \]

6417

\[ {} 24-48 x y+\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6418

\[ {} b +a x y-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6419

\[ {} \sqrt {x}\, y^{\prime \prime } = y^{{3}/{2}} \]

6420

\[ {} x^{{3}/{2}} y^{\prime \prime } = f \left (\frac {y}{\sqrt {x}}\right ) \]

6421

\[ {} \left (c \,x^{2}+2 b x +a \right )^{{3}/{2}} y^{\prime \prime } = f \left (\frac {x}{\sqrt {c \,x^{2}+2 b x +a}}\right ) \]

6422

\[ {} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime } = g \left (y, f \left (x \right ) y^{\prime }\right ) \]

6423

\[ {} f \left (x \right )^{2} y^{\prime \prime } = -24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \]

6424

\[ {} f \left (x \right )^{2} y^{\prime \prime } = 3 f \left (x \right )^{3}-a f \left (x \right )^{5}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right ) \]

6425

\[ {} 2 f \left (x \right )^{2} y^{\prime \prime } = 2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right ) \]

6426

\[ {} y y^{\prime \prime } = a \]

6427

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

6428

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6429

\[ {} y y^{\prime \prime } = -a^{2}+{y^{\prime }}^{2} \]

6430

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = a^{2} \]

6431

\[ {} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6432

\[ {} 2 a^{2} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6433

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+y^{3} \left (\operatorname {a2} +\operatorname {a3} y\right )+{y^{\prime }}^{2} \]

6434

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+{y^{\prime }}^{2} \]

6435

\[ {} y y^{\prime \prime } = y y^{\prime }+{y^{\prime }}^{2} \]

6436

\[ {} y y^{\prime \prime } = {\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2} \]

6437

\[ {} y y^{\prime \prime } = \ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \]

6438

\[ {} y y^{\prime \prime } = -x^{2} y^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \]

6439

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y^{\prime } \]

6440

\[ {} y y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

6441

\[ {} y y^{\prime \prime } = y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2} \]

6442

\[ {} y y^{\prime \prime } = -2 y^{\prime }+{y^{\prime }}^{2} \]

6443

\[ {} y-x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6444

\[ {} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6445

\[ {} y y^{\prime \prime } = y^{3}-f^{\prime }\left (x \right ) y+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \]

6446

\[ {} y y^{\prime \prime } = -f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \]

6447

\[ {} y y^{\prime \prime } = -b y^{2}-a y y^{\prime }+{y^{\prime }}^{2} \]

6448

\[ {} y y^{\prime \prime } = b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2} \]

6449

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6450

\[ {} y y^{\prime \prime } = g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6451

\[ {} y y^{\prime \prime } = -y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \]

6452

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

6453

\[ {} y y^{\prime \prime } = -2 y^{2}+2 {y^{\prime }}^{2} \]

6454

\[ {} y y^{\prime \prime } = y^{2}-3 y y^{\prime }+3 {y^{\prime }}^{2} \]

6455

\[ {} y y^{\prime \prime } = a {y^{\prime }}^{2} \]

6456

\[ {} y y^{\prime \prime } = b +a {y^{\prime }}^{2} \]

6457

\[ {} y y^{\prime \prime } = b y^{3}+a {y^{\prime }}^{2} \]

6458

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+a {y^{\prime }}^{2} \]

6459

\[ {} y y^{\prime \prime } = c y^{2}+b y y^{\prime }+a {y^{\prime }}^{2} \]

6460

\[ {} y y^{\prime \prime } = \operatorname {a2} y^{2}+\operatorname {a3} y^{a +1}+\operatorname {a1} y y^{\prime }+a {y^{\prime }}^{2} \]

6461

\[ {} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6462

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

6463

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

6464

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \]

6465

\[ {} 2 {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime \prime } = 0 \]

6466

\[ {} \left (a +y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6467

\[ {} {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = b \]

6468

\[ {} b {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = 0 \]

6469

\[ {} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime } = 0 \]

6470

\[ {} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime } = 0 \]

6471

\[ {} \left (x -y\right ) y^{\prime \prime } = \left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) \]

6472

\[ {} \left (x -y\right ) y^{\prime \prime } = f \left (y^{\prime }\right ) \]

6473

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6474

\[ {} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0 \]

6475

\[ {} 2 y y^{\prime \prime } = a +{y^{\prime }}^{2} \]

6476

\[ {} 2 y y^{\prime \prime } = 8 y^{3}+{y^{\prime }}^{2} \]

6477

\[ {} 2 y y^{\prime \prime } = 4 y^{2}+8 y^{3}+{y^{\prime }}^{2} \]

6478

\[ {} 2 y y^{\prime \prime } = 4 y^{2} \left (2 y+x \right )+{y^{\prime }}^{2} \]

6479

\[ {} 2 y y^{\prime \prime } = y^{2} \left (b y+a \right )+{y^{\prime }}^{2} \]

6480

\[ {} 2 y y^{\prime \prime } = -1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \]

6481

\[ {} 2 y y^{\prime \prime } = y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \]

6482

\[ {} 2 y y^{\prime \prime } = 3 y^{4}+{y^{\prime }}^{2} \]

6483

\[ {} 2 y y^{\prime \prime } = -a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \]

6484

\[ {} 2 y y^{\prime \prime } = 8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6485

\[ {} 2 y y^{\prime \prime } = -1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6486

\[ {} 2 y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

6487

\[ {} 2 y y^{\prime \prime } = 4 y^{2}+3 {y^{\prime }}^{2} \]

6488

\[ {} 2 y y^{\prime \prime } = f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \]

6489

\[ {} 2 y y^{\prime \prime } = y^{2} \left (1-3 y^{2}\right )+6 {y^{\prime }}^{2} \]

6490

\[ {} 2 y y^{\prime \prime } = -y^{2} \left (1+a y^{3}\right )+6 {y^{\prime }}^{2} \]

6491

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) \]

6492

\[ {} 3 y y^{\prime \prime } = 36 y^{2}+2 {y^{\prime }}^{2} \]

6493

\[ {} 3 y y^{\prime \prime } = 5 {y^{\prime }}^{2} \]

6494

\[ {} 4 y y^{\prime \prime } = -4 y+3 {y^{\prime }}^{2} \]

6495

\[ {} 4 y y^{\prime \prime } = 12 y^{2}+3 {y^{\prime }}^{2} \]

6496

\[ {} 4 y y^{\prime \prime } = a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2} \]

6497

\[ {} 5 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6498

\[ {} 12 y y^{\prime \prime } = -8 y^{3}+15 {y^{\prime }}^{2} \]

6499

\[ {} a y y^{\prime \prime } = \left (a -1\right ) {y^{\prime }}^{2} \]

6500

\[ {} a \left (2+a \right )^{2} y y^{\prime \prime } = -a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (a -1\right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \]