| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} y^{\prime \prime } = 6 y-4 x^{2} y^{2}+x^{4} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (x y^{\prime }-y\right )^{2}+x^{2} y^{\prime \prime } = b \,x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+a y^{3}+9 x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x^{2} y^{\prime }+x^{3} y^{\prime \prime } = -x^{2}+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime } = -4 y^{2}+x \left (x^{2}+2 y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime } = -4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right )^{3}+x^{4} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{b}+x^{a} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 24-48 x y+\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b +a x y-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {x}\, y^{\prime \prime } = y^{{3}/{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{{3}/{2}} y^{\prime \prime } = f \left (\frac {y}{\sqrt {x}}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+2 b x +a \right )^{{3}/{2}} y^{\prime \prime } = f \left (\frac {x}{\sqrt {c \,x^{2}+2 b x +a}}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime } = g \left (y, f \left (x \right ) y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} f \left (x \right )^{2} y^{\prime \prime } = -24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} f \left (x \right )^{2} y^{\prime \prime } = 3 f \left (x \right )^{3}-a f \left (x \right )^{5}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 f \left (x \right )^{2} y^{\prime \prime } = 2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = a
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -a^{2}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = a^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 a^{2} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+y^{3} \left (\operatorname {a2} +\operatorname {a3} y\right )+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = \ln \left (y\right ) y^{2}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -x^{2} y^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = -2 y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{3}-f^{\prime }\left (x \right ) y+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = -f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = -b y^{2}-a y y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -2 y^{2}+2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{2}-3 y y^{\prime }+3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = b +a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = b y^{3}+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = c y^{2}+b y y^{\prime }+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = \operatorname {a2} y^{2}+\operatorname {a3} y^{a +1}+\operatorname {a1} y y^{\prime }+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = b
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -y\right ) y^{\prime \prime } = \left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -y\right ) y^{\prime \prime } = f \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = a +{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 8 y^{3}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 4 y^{2}+8 y^{3}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 4 y^{2} \left (2 y+x \right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{2} \left (b y+a \right )+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{2} \left (a x +b y\right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 3 y^{4}+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 4 y^{2}+3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = f \left (x \right ) y^{2}+3 {y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{2} \left (1-3 y^{2}\right )+6 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -y^{2} \left (1+a y^{3}\right )+6 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = 36 y^{2}+2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = 5 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y y^{\prime \prime } = -4 y+3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y y^{\prime \prime } = 12 y^{2}+3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y y^{\prime \prime } = a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 12 y y^{\prime \prime } = -8 y^{3}+15 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y y^{\prime \prime } = \left (a -1\right ) {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (2+a \right )^{2} y y^{\prime \prime } = -a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (a -1\right ) \left (2+a \right )^{2} {y^{\prime }}^{2}
\]
|
✓ |
✗ |
✗ |
|