5.1.3 Problems 201 to 300

Table 5.5: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

6484

\[ {} 2 y y^{\prime \prime } = 8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6485

\[ {} 2 y y^{\prime \prime } = -1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6488

\[ {} 2 y y^{\prime \prime } = f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \]

6504

\[ {} x y y^{\prime \prime } = y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \]

6508

\[ {} x y y^{\prime \prime } = x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6509

\[ {} x y y^{\prime \prime } = b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6536

\[ {} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime } = 0 \]

6537

\[ {} 4 f \left (x \right ) y y^{\prime \prime } = 4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \]

6539

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

6540

\[ {} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = b x +a \]

6547

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6548

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = 2 \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6552

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = 4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6553

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = -\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6560

\[ {} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime } = 0 \]

6567

\[ {} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = -y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6568

\[ {} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6569

\[ {} 2 \left (1-x \right )^{2} x^{2} \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime } = \operatorname {a0} x \left (1-y\right )^{2} \left (x -y\right )^{2}+\left (\operatorname {a2} -1\right ) \left (1-x \right ) x \left (1-y\right )^{2} y^{2}+\operatorname {a1} \left (1-x \right ) \left (x -y\right )^{2} y^{2}+\operatorname {a3} \left (1-y\right )^{2} \left (x -y\right )^{2} y^{2}+2 \left (1-x \right ) x \left (1-y\right )^{2} y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right )^{2} x^{2} \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \]

6571

\[ {} a^{2} y+\left (x^{2}+y^{2}\right )^{2} y^{\prime \prime } = 0 \]

6573

\[ {} \operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime } = 0 \]

6575

\[ {} \sqrt {y}\, y^{\prime \prime } = 2 b x +2 a \]

6576

\[ {} X \left (x , y\right )^{3} y^{\prime \prime } = 1 \]

6580

\[ {} y^{\prime } y^{\prime \prime } = x y^{2}+x^{2} y y^{\prime } \]

6581

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

6582

\[ {} a y^{2}+x^{3} y^{\prime } y^{\prime \prime } = 0 \]

6583

\[ {} \operatorname {f5} y^{2}+\operatorname {f4} y y^{\prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime } = 0 \]

6585

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

6590

\[ {} h \left (x \right )+g \left (y\right ) y^{\prime }+f \left (y^{\prime }\right ) y^{\prime \prime } = 0 \]

6595

\[ {} a x -2 y^{\prime } y^{\prime \prime }+x {y^{\prime \prime }}^{2} = 0 \]

6597

\[ {} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2} = 2 y \]

6600

\[ {} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2} = 0 \]

6603

\[ {} {y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2} = 0 \]

6605

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6608

\[ {} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime } = {y^{\prime }}^{2}-y y^{\prime \prime } \]

6609

\[ {} f \left (y^{\prime \prime }, y^{\prime }-x y^{\prime \prime }, y-x y^{\prime }+\frac {x^{2} y^{\prime \prime }}{2}\right ) = 0 \]

6632

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

6675

\[ {} 2 y \left (2 f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right )+\left (4 g \left (x \right )+f^{\prime }\left (x \right )+2 {f^{\prime }\left (x \right )}^{2}\right ) y^{\prime }+3 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6681

\[ {} x y+3 y^{\prime }+x y^{\prime \prime \prime } = 0 \]

6695

\[ {} 2 x^{3} y+\left (-2 x^{3}+6\right ) y^{\prime }+x \left (-x^{2}+6\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6696

\[ {} 10 y^{\prime }+8 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime \prime } = 0 \]

6724

\[ {} -6 y+6 y^{\prime } \left (1+x \right )-3 x \left (x +2\right ) y^{\prime \prime }+x^{2} \left (3+y\right ) y^{\prime \prime \prime } = 0 \]

6757

\[ {} 10 f^{\prime }\left (x \right ) y^{\prime }+3 y \left (3 f \left (x \right )^{2}+f^{\prime \prime }\left (x \right )\right )+10 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6760

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6761

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x^{3} \]

6800

\[ {} y^{\prime \prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

6801

\[ {} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime } = 0 \]

6802

\[ {} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6803

\[ {} y^{2}-\left (1-2 x y\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right ) \]

6812

\[ {} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \]

6865

\[ {} \frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

6930

\[ {} x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]

7147

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

7318

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

7319

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

7320

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

7321

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

7396

\[ {} s^{2}+s^{\prime } = \frac {s+1}{s t} \]

7407

\[ {} y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]

7419

\[ {} y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right ) \]

7428

\[ {} y^{\prime } = y^{2}-3 y+2 \]

7430

\[ {} x^{\prime }+t x = {\mathrm e}^{x} \]

7433

\[ {} x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

7475

\[ {} \frac {2}{\sqrt {-x^{2}+1}}+y \cos \left (x y\right )+\left (x \cos \left (x y\right )-\frac {1}{y^{{1}/{3}}}\right ) y^{\prime } = 0 \]

7544

\[ {} 1+\frac {1}{1+x^{2}+4 x y+y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 x y+y^{2}}\right ) y^{\prime } = 0 \]

7618

\[ {} y^{\prime \prime }+y = 0 \]

7759

\[ {} y^{\prime }+x +x y^{2} = 0 \]

7976

\[ {} {y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

8069

\[ {} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

8070

\[ {} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

8071

\[ {} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

8163

\[ {} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

8165

\[ {} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

8168

\[ {} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

8170

\[ {} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

8219

\[ {} y^{\prime } = y-y^{2} \]

8220

\[ {} y^{\prime } = y-y^{2} \]

8248

\[ {} y^{\prime } = 1+y^{2} \]

8257

\[ {} y^{\prime \prime }+4 y = 0 \]

8262

\[ {} y^{\prime \prime }+4 y = 0 \]

8265

\[ {} 2 y^{\prime \prime }-3 y^{2} = 0 \]

8281

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

8304

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8305

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8306

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8307

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8371

\[ {} x^{\prime } = 4+4 x^{2} \]

8372

\[ {} y^{\prime } = \frac {y^{2}-1}{x^{2}-1} \]

8376

\[ {} \left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right ) = 0 \]

8381

\[ {} y^{\prime } = \left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \]

8389

\[ {} y^{\prime } = y^{2}-4 \]

8397

\[ {} y^{\prime } = \left (y-1\right )^{2}+\frac {1}{100} \]

8398

\[ {} y^{\prime } = \left (y-1\right )^{2}-\frac {1}{100} \]

8399

\[ {} y^{\prime } = y-y^{3} \]

8400

\[ {} y^{\prime } = y-y^{3} \]

8401

\[ {} y^{\prime } = y-y^{3} \]

8402

\[ {} y^{\prime } = y-y^{3} \]

8415

\[ {} y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]

8424

\[ {} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

8425

\[ {} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

8426

\[ {} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]