4.3.46 Problems 4501 to 4600

Table 4.455: Second order ode

#

ODE

Mathematica

Maple

Sympy

12997

\[ {} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

12998

\[ {} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

12999

\[ {} 4 y y^{\prime }-4 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

13000

\[ {} x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13001

\[ {} x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

13002

\[ {} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

13003

\[ {} x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \]

13004

\[ {} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

13005

\[ {} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2} = 0 \]

13006

\[ {} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2} = 0 \]

13007

\[ {} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

13008

\[ {} x \left (1+x \right )^{2} y y^{\prime \prime }-x \left (1+x \right )^{2} {y^{\prime }}^{2}+2 \left (1+x \right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

13009

\[ {} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

13010

\[ {} y^{2} y^{\prime \prime }-a = 0 \]

13011

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

13012

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

13013

\[ {} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

13014

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

13015

\[ {} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \]

13016

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13017

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13018

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+f \left (x \right ) \left (1-y\right ) y y^{\prime } = 0 \]

13019

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

13020

\[ {} 3 \left (1-y\right ) y y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

13021

\[ {} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

13022

\[ {} a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

13023

\[ {} a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

13024

\[ {} a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

13025

\[ {} x y^{2} y^{\prime \prime }-a = 0 \]

13026

\[ {} \left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \]

13027

\[ {} 2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (1+y\right ) = 0 \]

13028

\[ {} \left (x +y\right ) \left (x y^{\prime }-y\right )^{3}+x^{3} y^{2} y^{\prime \prime } = 0 \]

13029

\[ {} y^{3} y^{\prime \prime }-a = 0 \]

13030

\[ {} \left (1-3 y^{2}\right ) {y^{\prime }}^{2}+y \left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

13031

\[ {} 2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0 \]

13032

\[ {} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-x^{2} a -b x -c = 0 \]

13033

\[ {} 2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

13034

\[ {} \left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

13035

\[ {} \left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

13036

\[ {} \left (y^{2}-1\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

13037

\[ {} \left (c +2 b x +x^{2} a +y^{2}\right )^{2} y^{\prime \prime }+y d = 0 \]

13038

\[ {} \sqrt {y}\, y^{\prime \prime }-a = 0 \]

13039

\[ {} \sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

13040

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

13041

\[ {} \left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

13042

\[ {} h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right ) = 0 \]

13043

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

13044

\[ {} \left (x y^{\prime }-y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

13045

\[ {} \left (x y^{\prime }-y\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

13046

\[ {} a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

13047

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

13048

\[ {} y^{3}+\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime } = 0 \]

13049

\[ {} \left ({y^{\prime }}^{2}+a \left (x y^{\prime }-y\right )\right ) y^{\prime \prime }-b = 0 \]

13050

\[ {} \left (a \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

13051

\[ {} {y^{\prime \prime }}^{2}-a y-b = 0 \]

13052

\[ {} a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

13053

\[ {} 2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

13054

\[ {} 4 {y^{\prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2} = 0 \]

13055

\[ {} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2} = 0 \]

13056

\[ {} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

13057

\[ {} \left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

13058

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0 \]

13059

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

13060

\[ {} \sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

13077

\[ {} y^{\prime \prime }-f \left (y\right ) = 0 \]

13527

\[ {} y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

13617

\[ {} y y^{\prime }-y = a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \]

13774

\[ {} y^{\prime \prime }+a y = 0 \]

13775

\[ {} y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

13776

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

13777

\[ {} y^{\prime \prime }-\left (x^{2} a +b \right ) y = 0 \]

13778

\[ {} y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

13779

\[ {} y^{\prime \prime }-\left (x^{2} a +b c x \right ) y = 0 \]

13780

\[ {} y^{\prime \prime }-a \,x^{n} y = 0 \]

13781

\[ {} y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

13782

\[ {} y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

13783

\[ {} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

13784

\[ {} b y+a y^{\prime }+y^{\prime \prime } = 0 \]

13785

\[ {} y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

13786

\[ {} y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

13787

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

13788

\[ {} y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

13789

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

13790

\[ {} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

13791

\[ {} y^{\prime \prime }+x y^{\prime }+\left (n -1\right ) y = 0 \]

13792

\[ {} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

13793

\[ {} b y+a x y^{\prime }+y^{\prime \prime } = 0 \]

13794

\[ {} y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

13795

\[ {} y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

13796

\[ {} y^{\prime \prime }+2 a x y^{\prime }+\left (x^{4} b +a^{2} x^{2}+c x +a \right ) y = 0 \]

13797

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

13798

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

13799

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

13800

\[ {} y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

13801

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

13802

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

13803

\[ {} y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

13804

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

13805

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

13806

\[ {} y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]