2.3.24 first order ode constant coeff using laplace

Table 2.421: first order ode constant coeff using laplace

#

ODE

CAS classification

Solved?

3928

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

3929

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

3930

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

3931

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

3932

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3933

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3934

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3956

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3957

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

3958

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

3959

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3960

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3961

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3962

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

3971

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3972

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3973

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

3974

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

3975

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3976

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

6544

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

6545

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

6546

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

7023

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

7024

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

7035

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

7846

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7847

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

7848

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8000

\[ {}y^{\prime }-y = 1 \]
i.c.

[_quadrature]

8001

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

8002

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

8003

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8010

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8012

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

8013

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

8024

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8025

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8026

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8032

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8033

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8041

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

8042

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12860

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12861

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

12869

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12871

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

12872

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

12876

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13320

\[ {}y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13321

\[ {}y^{\prime }+y = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13729

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

13733

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

13735

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13736

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

13756

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

14197

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

14199

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

14204

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

14205

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14211

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

14212

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14219

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

14226

\[ {}y^{\prime }+3 y = \delta \left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

14227

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (-2+x \right ) \]
i.c.

[[_linear, ‘class A‘]]

15261

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

15262

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

15263

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15296

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15297

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15301

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

15304

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

15305

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (-4+t \right ) \]
i.c.

[_quadrature]

15308

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

15311

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

16959

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

16960

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

16961

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

16962

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

16963

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

18128

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]