2.2.203 Problems 20201 to 20300

Table 2.419: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

20201

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

86.039

20202

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.539

20203

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.818

20204

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.180

20205

\begin{align*} x^{\prime }+2 x+y^{\prime }+y&=0 \\ 5 x+y^{\prime }+3 y&=0 \\ \end{align*}

system_of_ODEs

0.427

20206

\begin{align*} x^{\prime }-7 x+y&=0 \\ y^{\prime }-2 x-5 y&=0 \\ \end{align*}

system_of_ODEs

0.553

20207

\begin{align*} x^{\prime }+2 x-3 y&=t \\ y^{\prime }-3 x+2 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.804

20208

\begin{align*} 4 x^{\prime }+9 y^{\prime }+44 x+49 y&=t \\ 3 x^{\prime }+7 y^{\prime }+34 x+38 y&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.755

20209

\begin{align*} x^{\prime \prime }-3 x-4 y&=0 \\ x+y^{\prime \prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.029

20210

\begin{align*} x^{\prime }+2 y^{\prime }-2 x+2 y&=3 \,{\mathrm e}^{t} \\ 3 x^{\prime }+y^{\prime }+2 x+y&=4 \,{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.684

20211

\begin{align*} 4 x^{\prime }+9 y^{\prime }+2 x+31 y&={\mathrm e}^{t} \\ 3 x^{\prime }+7 y^{\prime }+x+24 y&=3 \\ \end{align*}

system_of_ODEs

1.027

20212

\begin{align*} x^{\prime }+4 x+3 y&=t \\ y^{\prime }+2 x+5 y&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.645

20213

\begin{align*} x^{\prime }&=n y-m z \\ y^{\prime }&=L z-m x \\ z^{\prime }&=m x-L y \\ \end{align*}

system_of_ODEs

41.951

20214

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.982

20215

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

8.621

20216

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

[_linear]

2.839

20217

\begin{align*} \left (y x +1\right ) y-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.641

20218

\begin{align*} \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y+y^{2}&=0 \\ \end{align*}

[_Bernoulli]

2.760

20219

\begin{align*} y-x +\left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.732

20220

\begin{align*} x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.438

20221

\begin{align*} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10.734

20222

\begin{align*} y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\ \end{align*}

[_Bernoulli]

4.289

20223

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 y x&=-x^{3}+x \\ \end{align*}

[_linear]

2.325

20224

\begin{align*} y^{\prime } x -y-\cos \left (\frac {1}{x}\right )&=0 \\ \end{align*}

[_linear]

1.953

20225

\begin{align*} y y^{\prime }+x&=m \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.531

20226

\begin{align*} x \cos \left (y\right )^{2}&=y \cos \left (x \right )^{2} y^{\prime } \\ \end{align*}

[_separable]

4.566

20227

\begin{align*} y^{\prime }&={\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \\ \end{align*}

[_separable]

1.945

20228

\begin{align*} x^{2} y^{\prime }+y&=1 \\ \end{align*}

[_separable]

1.859

20229

\begin{align*} 2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.295

20230

\begin{align*} x y^{2}+x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.266

20231

\begin{align*} y^{\prime }&={\mathrm e}^{x +y}+x^{2} {\mathrm e}^{y} \\ \end{align*}

[_separable]

1.969

20232

\begin{align*} \left (3+2 \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime }&=1+2 \sin \left (y\right )+\cos \left (y\right ) \\ \end{align*}

[_separable]

8.070

20233

\begin{align*} \frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y}&=0 \\ \end{align*}

[_separable]

4.431

20234

\begin{align*} \left ({\mathrm e}^{x}+1\right ) y y^{\prime }&=\left (1+y\right ) {\mathrm e}^{x} \\ \end{align*}

[_separable]

3.187

20235

\begin{align*} \csc \left (x \right ) \ln \left (y\right ) y^{\prime }+y^{2} x^{2}&=0 \\ \end{align*}

[_separable]

5.171

20236

\begin{align*} y^{\prime }&=\frac {\sin \left (x \right )+\cos \left (x \right ) x}{y \left (2 \ln \left (y\right )+1\right )} \\ \end{align*}

[_separable]

0.815

20237

\begin{align*} \cos \left (y\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right )&=\cos \left (x \right ) \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) y^{\prime } \\ \end{align*}

[_separable]

37.778

20238

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.708

20239

\begin{align*} \left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x&=0 \\ \end{align*}

[_separable]

30.597

20240

\begin{align*} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

3.459

20241

\begin{align*} -y^{\prime } x +y&=a \left (y^{\prime }+y^{2}\right ) \\ \end{align*}

[_separable]

3.670

20242

\begin{align*} \left (x +y-1\right ) y^{\prime }&=x +y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.025

20243

\begin{align*} \left (2 x +2 y+1\right ) y^{\prime }&=x +y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.309

20244

\begin{align*} 2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.687

20245

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }&=y x +x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.403

20246

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

7.709

20247

\begin{align*} x^{2}-y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.433

20248

\begin{align*} y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.846

20249

\begin{align*} \left (2 x -2 y+5\right ) y^{\prime }-x +y-3&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.072

20250

\begin{align*} x +y+1-\left (2 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.290

20251

\begin{align*} y^{2}&=\left (y x -x^{2}\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13.214

20252

\begin{align*} x \sin \left (\frac {y}{x}\right ) y^{\prime }&=y \sin \left (\frac {y}{x}\right )-x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.771

20253

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }&=y x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.769

20254

\begin{align*} x^{2} y^{\prime }+y \left (x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.726

20255

\begin{align*} 2 y^{\prime }&=\frac {y}{x}+\frac {y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12.434

20256

\begin{align*} \left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39.018

20257

\begin{align*} \left (x -3 y+4\right ) y^{\prime }+7 y-5 x&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

38.447

20258

\begin{align*} \left (3+2 x +4 y\right ) y^{\prime }&=x +2 y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.112

20259

\begin{align*} -y+y^{\prime } x&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.573

20260

\begin{align*} \left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

8.413

20261

\begin{align*} x^{2}+3 y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.169

20262

\begin{align*} y^{\prime }&=\frac {1+2 x -y}{x +2 y-3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.950

20263

\begin{align*} \left (x -y\right ) y^{\prime }&=x +y+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.989

20264

\begin{align*} x -y-2-\left (2 x -2 y-3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.323

20265

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 \cos \left (x \right ) \\ \end{align*}

[_linear]

2.075

20266

\begin{align*} \cos \left (x \right )^{2} y^{\prime }+y&=\tan \left (x \right ) \\ \end{align*}

[_linear]

4.114

20267

\begin{align*} x \cos \left (x \right ) y^{\prime }+y \left (x \sin \left (x \right )+\cos \left (x \right )\right )&=1 \\ \end{align*}

[_linear]

6.469

20268

\begin{align*} y-x \sin \left (x^{2}\right )+y^{\prime } x&=0 \\ \end{align*}

[_linear]

1.851

20269

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=2 \ln \left (x \right ) \\ \end{align*}

[_linear]

2.136

20270

\begin{align*} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

[_linear]

3.565

20271

\begin{align*} \left (x y^{2}+1+x \right ) y^{\prime }+y+y^{3}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.971

20272

\begin{align*} y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5.968

20273

\begin{align*} y^{\prime }+3 x^{2} y&=x^{5} {\mathrm e}^{x^{3}} \\ \end{align*}

[_linear]

1.838

20274

\begin{align*} y^{\prime }-\frac {\tan \left (y\right )}{x +1}&=\left (x +1\right ) {\mathrm e}^{x} \sec \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

10.594

20275

\begin{align*} y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}&=1 \\ \end{align*}

[_linear]

2.484

20276

\begin{align*} y^{\prime }+\frac {2 y}{x}&=\sin \left (x \right ) \\ \end{align*}

[_linear]

1.867

20277

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.192

20278

\begin{align*} 1+y+x^{2} y+\left (x^{3}+x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

1.641

20279

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{2 x \left (x^{2}+1\right )} \\ \end{align*}

[_linear]

1.648

20280

\begin{align*} y^{\prime }+\frac {\tan \left (y\right )}{x}&=\frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

38.021

20281

\begin{align*} y^{\prime }+\frac {y \ln \left (y\right )}{x}&=\frac {y}{x^{2}}-\ln \left (y\right )^{2} \\ \end{align*}

[‘x=_G(y,y’)‘]

2.620

20282

\begin{align*} x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\ \end{align*}

[_separable]

3.374

20283

\begin{align*} y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

4.308

20284

\begin{align*} 2 y^{\prime }-y \sec \left (x \right )&=y^{3} \tan \left (x \right ) \\ \end{align*}

[_Bernoulli]

10.404

20285

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=y^{n} \sin \left (2 x \right ) \\ \end{align*}

[_Bernoulli]

5.944

20286

\begin{align*} y y^{\prime }+x&=\frac {a^{2} \left (-y+y^{\prime } x \right )}{x^{2}+y^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

3.122

20287

\begin{align*} 1+4 y x +2 y^{2}+\left (1+4 y x +2 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.658

20288

\begin{align*} x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.286

20289

\begin{align*} \left (y^{4} x^{4}+y^{2} x^{2}+y x \right ) y+\left (y^{4} x^{4}-y^{2} x^{2}+y x \right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.537

20290

\begin{align*} y \left (y x +2 y^{2} x^{2}\right )+x \left (y x -y^{2} x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.485

20291

\begin{align*} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.090

20292

\begin{align*} x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.189

20293

\begin{align*} \left (20 x^{2}+8 y x +4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+y x +y^{2}+y^{3}\right ) x y^{\prime }&=0 \\ \end{align*}

[_rational]

2.596

20294

\begin{align*} y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.636

20295

\begin{align*} 2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16.344

20296

\begin{align*} \frac {y y^{\prime }+x}{-y+y^{\prime } x}&=\sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

78.743

20297

\begin{align*} \frac {\left (x +y-a \right ) y^{\prime }}{x +y-b}&=\frac {x +y+a}{x +y+b} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

2.711

20298

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

3.349

20299

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

6.819

20300

\begin{align*} y^{\prime }&=\left (4 x +y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

6.683