6.78 Problems 7701 to 7800

Table 6.155: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

7701

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7702

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

7703

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7704

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

7705

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

7706

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

7707

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

7708

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

7709

\[ {}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 x y = 0 \]

7710

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

7711

\[ {}x y^{\prime \prime }+4 y = 0 \]

7712

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7713

\[ {}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

7714

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

7715

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7716

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7717

\[ {}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7718

\[ {}3 x^{2} y^{\prime \prime }+5 x y^{\prime }+3 x y = 0 \]

7719

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

7720

\[ {}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

7721

\[ {}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

7722

\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 y \cos \left (x \right ) = 0 \]

7723

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

7724

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \]

7725

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

7726

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (-x^{3}+3\right ) y = 0 \]

7727

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

7728

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

7729

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \]

7730

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7731

\[ {}y^{\prime } = x^{2} y \]

7732

\[ {}y y^{\prime } = x \]

7733

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

7734

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

7735

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

7736

\[ {}y^{\prime } = y^{2} \]

7737

\[ {}y^{\prime } = 2 \sqrt {y} \]

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]

7739

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

7740

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

7741

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

7742

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

7743

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

7744

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

7745

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

7746

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

7747

\[ {}2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

7748

\[ {}x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \]

7749

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

7750

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

7751

\[ {}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \]

7752

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

7753

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

7754

\[ {}3 \ln \left (x \right ) x^{2}+x^{2}+y+x y^{\prime } = 0 \]

7755

\[ {}2 y^{3}+2+3 y^{2} y^{\prime } x = 0 \]

7756

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

7757

\[ {}5 y^{2} x^{3}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

7758

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7760

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

7761

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

7762

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

7763

\[ {}y^{\prime \prime } = y y^{\prime } \]

7764

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

7765

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

7766

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

7767

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

7768

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

7769

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )] \]

7770

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 6 y_{1} \left (x \right )+y_{2} \left (x \right )] \]

7771

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+{\mathrm e}^{3 x}] \]

7772

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \]

7773

\[ {}y^{\prime } = 2 x \]

7774

\[ {}x y^{\prime } = 2 y \]

7775

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

7776

\[ {}y^{\prime } = k y \]

7777

\[ {}y^{\prime \prime }+4 y = 0 \]

7778

\[ {}y^{\prime \prime }-4 y = 0 \]

7779

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

7780

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

7781

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

7782

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

7783

\[ {}x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

7784

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

7785

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

7786

\[ {}1+y^{2}+y^{\prime } y^{2} = 0 \]

7787

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

7788

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

7789

\[ {}\left (1+x \right ) y^{\prime } = x \]

7790

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

7791

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

7792

\[ {}x y^{\prime } = 1 \]

7793

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

7794

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

7795

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

7796

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

7797

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]

7798

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]

7799

\[ {}y^{\prime } = \ln \left (x \right ) \]

7800

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]