6.89 Problems 8801 to 8900

Table 6.177: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8803

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

8804

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

8805

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8806

\[ {}y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

8807

\[ {}y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

8808

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

8809

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

8810

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

8811

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

8812

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8813

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

8814

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

8815

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

8816

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

8817

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

8818

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

8819

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

8820

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

8821

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

8822

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

8823

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

8824

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

8825

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

8826

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

8827

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

8828

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

8829

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

8830

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

8831

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

8832

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

8833

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

8834

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

8835

\[ {}y^{\prime \prime }-x y-x = 0 \]

8836

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

8837

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

8838

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

8839

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

8840

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

8841

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

8842

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

8843

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

8844

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

8845

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

8846

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

8847

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

8848

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

8849

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

8850

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

8851

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

8852

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

8854

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

8855

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

8856

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8857

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

8858

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]

8861

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8862

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8863

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8864

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8865

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8866

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8867

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8868

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

8869

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8871

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

8875

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

8876

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

8877

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

8878

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

8879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

8880

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

8882

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8884

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8886

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

8887

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

8888

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

8889

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

8890

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

8891

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

8892

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

8893

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

8894

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

8895

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

8896

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \]

8897

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \]

8898

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

8899

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

8900

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]