6.131 Problems 13001 to 13100

Table 6.261: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13001

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

13002

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

13003

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

13004

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

13005

\[ {}x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

13006

\[ {}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

13007

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

13008

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

13009

\[ {}x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

13010

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

13011

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

13012

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

13013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

13014

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

13015

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

13016

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2+4 x \right ) y^{\prime }+2 y = 0 \]

13017

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

13018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

13019

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

13020

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

13022

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

13023

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

13024

\[ {}[3 x^{\prime }\left (t \right )+3 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{t}, 4 x \left (t \right )-3 y^{\prime }\left (t \right )+3 y \left (t \right ) = 3 t] \]

13025

\[ {}x^{\prime } = \frac {2 x}{t} \]

13026

\[ {}x^{\prime } = -\frac {t}{x} \]

13027

\[ {}x^{\prime } = -x^{2} \]

13028

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

13030

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

13031

\[ {}2 t x^{\prime } = x \]

13032

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

13033

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

13035

\[ {}x^{\prime } = x^{2}+t^{2} \]

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]

13037

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]

13038

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]

13043

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]

13044

\[ {}x^{\prime } = \sqrt {x} \]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]

13046

\[ {}y^{\prime } = 1+y^{2} \]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

13048

\[ {}x^{\prime } = a x+b \]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

13052

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

13053

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

13054

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

13055

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

13057

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]

13060

\[ {}x^{\prime } = 2 t x^{2} \]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]

13062

\[ {}x^{\prime } = x \left (4+x\right ) \]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]

13065

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]

13066

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]

13068

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]

13072

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]

13075

\[ {}x^{\prime } = 2 t^{3} x-6 \]

13076

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

13077

\[ {}x^{\prime } = t -x^{2} \]

13078

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

13079

\[ {}x x^{\prime } = 1-t x \]

13080

\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \]

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

13084

\[ {}t x^{\prime } = -x+t^{2} \]

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

13087

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]

13089

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]

13093

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

13094

\[ {}x^{\prime } = 2 t x \]

13095

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]

13096

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

13098

\[ {}x^{\prime } = a x+b \]

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]