|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime \prime }+2 k \,{\mathrm e}^{x \mu } y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 x \mu }+k \mu \,{\mathrm e}^{x \mu }+c \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+c \left ({\mathrm e}^{\lambda x} a +b -c \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{x \mu }\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (-c +a \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 x \mu }+c \,{\mathrm e}^{x \mu }+k \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 x \mu }+d \,{\mathrm e}^{x \mu }+k \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{x \mu }+\lambda \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 x \mu }+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 x \mu }\right )-\mu \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{x \mu }\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime }+\left ({\mathrm e}^{x \left (\lambda +\mu \right )} a b +{\mathrm e}^{\lambda x} c a +b \mu \,{\mathrm e}^{x \mu }\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {1}{\sqrt {x^{2}+y^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {x^{2}+y^{2}}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+x +x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y^{2}-x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \,{\mathrm e}^{\frac {y}{x}}+y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-x y+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3}+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cot \left (x \right ) y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+\left (1+x \right ) y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{{5}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime }+x y^{2} = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-\frac {y+1}{1+x} = \sqrt {y+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-x y+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x y^{\prime }-y}{\sqrt {x^{2}-y^{2}}} = x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +y-\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}+y^{2}-2 x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y^{2}+2 x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y+2 x^{2} y-x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y\right ) y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y y^{\prime }+y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-a y+b y^{2} = c \,x^{2 a}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-x^{2} y = x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y-x \right )^{2} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-x \right ) y+\left (1-y\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {x^{2}-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2} \left (3 y+x y^{\prime }\right )-2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2}+y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-x \right ) y-\left (y+1\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right ) = \left (x^{2}+y^{2}+x \right ) \left (x y^{\prime }-y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{4}+x^{2} y^{3}+x y^{2}+y+\left (x^{4} y^{3}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 x y^{\prime }-y\right )^{2} = 8 x^{3}
\]
|
✓ |
✓ |
✓ |
|