6.157 Problems 15601 to 15700

Table 6.313: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

15601

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]

15602

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

15603

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]

15604

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

15605

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

15606

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]

15607

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]

15608

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]

15609

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

15610

\[ {}y^{\prime \prime }+4 y = 1 \]

15611

\[ {}y^{\prime \prime }+4 y = t \]

15612

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]

15613

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

15614

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]

15615

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]

15616

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

15617

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]

15618

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]

15619

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]

15620

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

15621

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

15622

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15623

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15624

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]

15625

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15626

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15627

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15628

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]

15629

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]

15630

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]

15631

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]

15632

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]

15633

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

15634

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]

15635

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]

15636

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

15637

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]

15638

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

15639

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

15640

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]

15641

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

15642

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]

15643

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

15644

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

15645

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

15646

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

15647

\[ {}y^{\prime }-2 y = 0 \]

15648

\[ {}y^{\prime }-2 x y = 0 \]

15649

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

15650

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

15651

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

15652

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

15653

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

15654

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

15655

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

15656

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

15657

\[ {}\left (1+x \right ) y^{\prime }-x y = 0 \]

15658

\[ {}\left (1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

15659

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

15660

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

15661

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

15662

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

15663

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

15664

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

15665

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

15666

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

15667

\[ {}y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

15668

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

15669

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

15670

\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

15671

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

15672

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

15673

\[ {}y^{\prime \prime }+4 y = 0 \]

15674

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

15675

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{2 x} = 0 \]

15676

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

15677

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

15678

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-x y = 0 \]

15679

\[ {}y^{\prime \prime }-y^{2} = 0 \]

15680

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

15681

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15682

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

15683

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15684

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15685

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

15686

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

15687

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

15688

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

15689

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

15690

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

15691

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15692

\[ {}y^{\prime }+y \,{\mathrm e}^{2 x} = 0 \]

15693

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

15694

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

15695

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

15696

\[ {}y^{\prime \prime }+3 x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15697

\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \]

15698

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

15699

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

15700

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]