6.154 Problems 15301 to 15400

Table 6.307: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15301

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

15302

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

15303

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15304

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

15305

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

15306

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

15307

\[ {} x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

15308

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

15309

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

15310

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

15311

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15312

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

15313

\[ {} 4 x^{2} y^{\prime \prime }+37 y = 0 \]

15314

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

15315

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

15316

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

15317

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

15318

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

15319

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15320

\[ {} x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

15321

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15322

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

15323

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

15324

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

15325

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15326

\[ {} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

15327

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

15328

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

15329

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

15330

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15331

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15332

\[ {} y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

15333

\[ {} y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

15334

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

15335

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

15336

\[ {} y^{\prime \prime }-9 y = 36 \]

15337

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

15338

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

15339

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

15340

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

15341

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

15342

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

15343

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

15344

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

15345

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

15346

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

15347

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

15348

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

15349

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

15350

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

15351

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

15352

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

15353

\[ {} y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

15354

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

15355

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

15356

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

15357

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]

15358

\[ {} y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

15359

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

15360

\[ {} y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

15361

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

15362

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]

15363

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

15364

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

15365

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

15366

\[ {} y^{\prime \prime }+9 y = 9 x^{4}-9 \]

15367

\[ {} y^{\prime \prime }+9 y = x^{3} \]

15368

\[ {} y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

15369

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

15370

\[ {} y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

15371

\[ {} y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

15372

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

15373

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

15374

\[ {} y^{\prime \prime }+9 y = 39 \,{\mathrm e}^{2 x} x \]

15375

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

15376

\[ {} y^{\prime \prime }+4 y^{\prime } = 20 \]

15377

\[ {} y^{\prime \prime }+4 y^{\prime } = x^{2} \]

15378

\[ {} y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

15379

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

15380

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

15381

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

15382

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

15383

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

15384

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

15385

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

15386

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

15387

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

15388

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

15389

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

15390

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

15391

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

15392

\[ {} y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

15393

\[ {} y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

15394

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

15395

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

15396

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

15397

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

15398

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

15399

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

15400

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]