5.4.35 Problems 3401 to 3500

Table 5.483: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

17555

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17556

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17560

\[ {}y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 \ln \left (t \right ) y = 0 \]

17561

\[ {}\left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17562

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17563

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]

17565

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

17566

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

17567

\[ {}y^{\prime \prime }+4 y = 0 \]

17568

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17569

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

17570

\[ {}\left (1-x \cot \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17571

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17572

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17573

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

17574

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

17575

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

17576

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

17577

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

17578

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17579

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

17580

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

17581

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

17582

\[ {}y^{\prime \prime }+a \left (x y^{\prime }+y\right ) = 0 \]

17583

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17584

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17585

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17586

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17587

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17588

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17589

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17590

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17591

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17592

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17593

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

17594

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

17595

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

17596

\[ {}4 y^{\prime \prime }-9 y = 0 \]

17597

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

17598

\[ {}y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

17599

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

17600

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

17601

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

17602

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

17603

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17604

\[ {}9 y^{\prime \prime }-24 y^{\prime }+16 y = 0 \]

17605

\[ {}4 y^{\prime \prime }+9 y = 0 \]

17606

\[ {}4 y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

17607

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

17608

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

17609

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

17610

\[ {}y^{\prime \prime }+16 y = 0 \]

17611

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

17612

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17613

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

17614

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

17615

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

17616

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

17617

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

17618

\[ {}y^{\prime \prime }+y = 0 \]

17619

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17620

\[ {}y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

17621

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

17622

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

17623

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

17624

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

17625

\[ {}4 y^{\prime \prime }-y = 0 \]

17626

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0 \]

17627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

17628

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

17629

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\frac {5 y}{4} = 0 \]

17630

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }-6 y = 0 \]

17631

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

17632

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

17633

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

17634

\[ {}2 x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

17635

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-3 y = 0 \]

17636

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+17 y = 0 \]

17637

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

17638

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

17639

\[ {}y^{\prime \prime }+2 y = 0 \]

17640

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0 \]

17641

\[ {}m y^{\prime \prime }+k y = 0 \]

17712

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

17713

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17714

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17715

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17725

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

17727

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

17728

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17729

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

17971

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

17976

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

17977

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

17978

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

17979

\[ {}n \,x^{3} y^{\prime \prime } = \left (-x y^{\prime }+y\right )^{2} \]

17982

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

17985

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

17986

\[ {}a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

17987

\[ {}x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y y^{\prime } = 4 y^{2} \]