5.9.65 Problems 6401 to 6500

Table 5.757: First order ode linear in derivative

#

ODE

Mathematica

Maple

16762

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

16763

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]

16764

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

16766

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

16768

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

16769

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

16770

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

16771

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (-1+\cos \left (x \right )\right ) \ln \left (2\right ) \]

16772

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]

16773

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]

16774

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]

16775

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]

16776

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]

16777

\[ {}x y^{\prime }+y = 2 x \]

16778

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 1 \]

16779

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

16781

\[ {}3 y^{2} y^{\prime } x -2 y^{3} = x^{3} \]

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

16784

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

16785

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

16786

\[ {}2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

16787

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

16789

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

16790

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

16791

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 1+x \]

16792

\[ {}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

16793

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (2 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

16795

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

16796

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

16797

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

16798

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

16799

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

16800

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

16801

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

16802

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

16803

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

16804

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

16805

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (-a^{2}+x^{2}+y^{2}\right ) = 0 \]

16806

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

16807

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

16808

\[ {}x^{2}+y-x y^{\prime } = 0 \]

16809

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

16810

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

16811

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 y^{2} y^{\prime } x^{2} = 0 \]

16812

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

16813

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

16814

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

16815

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

16816

\[ {}x -x y+\left (x^{2}+y\right ) y^{\prime } = 0 \]

16848

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

16849

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

16850

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

16851

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

16867

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

16868

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

16869

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

16870

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

16871

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

16872

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

16873

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

16874

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

16875

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

16876

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

16877

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

16878

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

16879

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

16880

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

16881

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

16882

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

16883

\[ {}y^{2} y^{\prime } x -y^{3} = \frac {x^{4}}{3} \]

16884

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

16885

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

16886

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

16887

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

16888

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

16889

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

16890

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

16891

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

16892

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

16893

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

16894

\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

16895

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

16896

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

16897

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

16898

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

16899

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

16900

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

16901

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

16902

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

16903

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

17283

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]

17284

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]

17285

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]