5.20.12 Problems 1101 to 1200

Table 5.929: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

4467

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x} \]

4468

\[ {}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2} \]

4469

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x \]

4470

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 36 \,{\mathrm e}^{2 x} x \]

4471

\[ {}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right ) \]

4472

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right ) \]

4473

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right ) \]

4474

\[ {}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

4475

\[ {}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x} \]

4476

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

4477

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

4478

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

4479

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x} \left (1+x \right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

4480

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

4481

\[ {}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

4482

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

4483

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

4485

\[ {}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

4486

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

4487

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4488

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

4489

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

4490

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

4491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

4492

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4493

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \sin \left (x \right )+50 \,{\mathrm e}^{2 x} \]

4494

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

4495

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

4496

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

4497

\[ {}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

4498

\[ {}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

4499

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

4500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {1+x} \]

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}} \]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

4514

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 60 \cos \left (3 t \right ) \]

4515

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 9 \,{\mathrm e}^{-2 t} \]

4516

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 t^{2}+1 \]

4517

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \]

4518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \]

4519

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 8 \,{\mathrm e}^{-t} \sin \left (t \right ) \]

4520

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

4521

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 54 t \,{\mathrm e}^{-2 t} \]

4522

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \]

4523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4524

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4525

\[ {}y^{\prime \prime }+4 y = 8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (t -2\right ) \]

4526

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \]

4527

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \delta \left (t -2\right ) \]

4528

\[ {}y^{\prime \prime }+4 y = 4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

5917

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

5918

\[ {}y^{\prime \prime }-y = 0 \]

5919

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

5920

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5921

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

5922

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

5923

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

5924

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

5925

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

5926

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

5927

\[ {}y^{\prime \prime \prime \prime } = 0 \]

5928

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5929

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

5930

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

5931

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

5932

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

5933

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

5934

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

5935

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

5936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

5937

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5938

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

5939

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

5940

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

5941

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

5942

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

5943

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

5944

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

5945

\[ {}y^{\prime \prime } = 0 \]

5946

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5947

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5948

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

5949

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

5950

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

5951

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

5952

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

5953

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

5954

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]