5.1.28 Problems 2701 to 2800

Table 5.55: First order ode

#

ODE

Mathematica

Maple

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

5618

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

5619

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

5620

\[ {}3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

5621

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

5622

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]

5623

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

5625

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

5626

\[ {}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0 \]

5627

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0 \]

5628

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

5629

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{\prime } y^{2}+1 = 0 \]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

5631

\[ {}x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

5632

\[ {}2 x^{3} {y^{\prime }}^{3}+6 y {y^{\prime }}^{2} x^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0 \]

5633

\[ {}{y^{\prime }}^{3} x^{4}-y {y^{\prime }}^{2} x^{3}-y^{2} y^{\prime } x^{2}+x y^{3} = 1 \]

5634

\[ {}x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0 \]

5635

\[ {}y {y^{\prime }}^{3}-3 x y^{\prime }+3 y = 0 \]

5636

\[ {}2 y {y^{\prime }}^{3}-3 x y^{\prime }+2 y = 0 \]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

5638

\[ {}y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

5639

\[ {}y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

5640

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

5641

\[ {}16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

5642

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5643

\[ {}y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

5644

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

5645

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

5646

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

5647

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

5648

\[ {}{y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

5649

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

5650

\[ {}{y^{\prime }}^{4}-4 y {y^{\prime }}^{2} x^{2}+16 y^{2} y^{\prime } x -16 y^{3} = 0 \]

5651

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

5652

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

5653

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

5654

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

5655

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

5656

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

5657

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3} = 0 \]

5658

\[ {}{y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{4} = 0 \]

5659

\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

5660

\[ {}2 \sqrt {a y^{\prime }}+x y^{\prime }-y = 0 \]

5661

\[ {}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (1+y^{\prime }\right ) \]

5662

\[ {}2 \left (1+y\right )^{{3}/{2}}+3 x y^{\prime }-3 y = 0 \]

5663

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x \]

5664

\[ {}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = y \]

5665

\[ {}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime } \]

5666

\[ {}\sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5667

\[ {}a \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5668

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

5669

\[ {}\sqrt {\left (a \,x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0 \]

5670

\[ {}a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+x y^{\prime }-y = 0 \]

5671

\[ {}\cos \left (y^{\prime }\right )+x y^{\prime } = y \]

5672

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

5673

\[ {}\sin \left (y^{\prime }\right )+y^{\prime } = x \]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

5675

\[ {}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y \]

5676

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2} = 1 \]

5677

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

5679

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0 \]

5680

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a = y \]

5681

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a +b y = 0 \]

5682

\[ {}\ln \left (y^{\prime }\right )+4 x y^{\prime }-2 y = 0 \]

5683

\[ {}\ln \left (y^{\prime }\right )+a \left (x y^{\prime }-y\right ) = 0 \]

5684

\[ {}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0 \]

5685

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

5686

\[ {}y^{\prime } \ln \left (y^{\prime }\right )-\left (1+x \right ) y^{\prime }+y = 0 \]

5687

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

5688

\[ {}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y \]

5689

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

5690

\[ {}y^{\prime } = \frac {x +y-3}{-y+x -1} \]

5691

\[ {}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5} \]

5692

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{2} \]

5693

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

5695

\[ {}y+x y^{2}-x y^{\prime } = 0 \]

5696

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2} \]

5697

\[ {}y = x y^{\prime }+\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

5698

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

5699

\[ {}\left (1+x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

5700

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

5702

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

5707

\[ {}x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0 \]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

5709

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

5710

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

5711

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

5712

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

5714

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

5715

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]