5.27.8 Problems 701 to 800

Table 5.1181: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

7361

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]

7363

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]

7364

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]

7365

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]

7366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]

7367

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]

7368

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7369

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7370

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

7371

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]

7372

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]

7373

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]

7374

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

7375

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]

7376

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]

7377

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]

7378

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

7379

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

7380

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]

7381

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

7520

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 1+3 x \]

7521

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]

7522

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

7536

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

7537

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

7538

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

7540

\[ {}y^{\prime \prime }+4 y = x^{2} \]

7541

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

7581

\[ {}y^{\prime \prime } = x +2 \]

7589

\[ {}y^{\prime \prime } = 1+3 x \]

7629

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7630

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

7631

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

7632

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

7633

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

7634

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

7635

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

7636

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

7637

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

7638

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

7639

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

7664

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

7665

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7666

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

7667

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

7668

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

7669

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

7670

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

7671

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7823

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

7970

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

7971

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

7972

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

7973

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

7974

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

7975

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

7976

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

7977

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

7978

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

7979

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

7980

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

7981

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

7982

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

7983

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

7985

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

7986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

7987

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

7988

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

7989

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

7990

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

7991

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

7992

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

7993

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

7994

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

7995

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

7996

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

7997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

7998

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

7999

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

8043

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

8044

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

8045

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

8046

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

8048

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]

8049

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]

8050

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]

8051

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]

8052

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]

8053

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]

8054

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]

8055

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

8056

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

8057

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

8058

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

8059

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

8060

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

8062

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

8063

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]

8064

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]