4.24.19 Problems 1801 to 1900

Table 4.1047: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

11070

\[ {} 4 y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-\left (5 \tan \left (x \right )^{2}+2\right ) y = 0 \]

11071

\[ {} a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y = 0 \]

11072

\[ {} a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0 \]

11073

\[ {} x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

11074

\[ {} x y^{\prime \prime }+\left (x +a \right ) y = 0 \]

11075

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

11076

\[ {} x y^{\prime \prime }+y^{\prime }+a y = 0 \]

11077

\[ {} x y^{\prime \prime }+y^{\prime }+l x y = 0 \]

11078

\[ {} x y^{\prime \prime }+y^{\prime }+\left (x +a \right ) y = 0 \]

11079

\[ {} x y^{\prime \prime }-y^{\prime }+a y = 0 \]

11080

\[ {} x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

11081

\[ {} x y^{\prime \prime }-y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y = 0 \]

11082

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

11083

\[ {} x y^{\prime \prime }+2 y^{\prime }+a x y = 0 \]

11084

\[ {} x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0 \]

11085

\[ {} x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

11086

\[ {} x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

11087

\[ {} x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

11088

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

11089

\[ {} x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y = 0 \]

11090

\[ {} x y^{\prime \prime }+\left (x +a +b \right ) y^{\prime }+a y = 0 \]

11091

\[ {} x y^{\prime \prime }-x y^{\prime }-y-x \left (1+x \right ) {\mathrm e}^{x} = 0 \]

11092

\[ {} x y^{\prime \prime }-x y^{\prime }-a y = 0 \]

11093

\[ {} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

11094

\[ {} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

11095

\[ {} x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

11096

\[ {} x y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-y = 0 \]

11097

\[ {} x y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y = 0 \]

11098

\[ {} x y^{\prime \prime }+\left (a x +b +n \right ) y^{\prime }+n a y = 0 \]

11099

\[ {} x y^{\prime \prime }-\left (a +b \right ) \left (1+x \right ) y^{\prime }+a b x y = 0 \]

11100

\[ {} x y^{\prime \prime }+\left (\left (a +b \right ) x +m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

11101

\[ {} x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]

11102

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

11103

\[ {} x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11104

\[ {} x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

11105

\[ {} x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0 \]

11106

\[ {} x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \]

11107

\[ {} x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

11108

\[ {} x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

11109

\[ {} x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

11110

\[ {} x y^{\prime \prime }+\left (f \left (x \right ) x +2\right ) y^{\prime }+f \left (x \right ) y = 0 \]

11111

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

11112

\[ {} 2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

11113

\[ {} 2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0 \]

11114

\[ {} 2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \]

11115

\[ {} \left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \]

11116

\[ {} 4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \]

11117

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

11118

\[ {} 4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

11119

\[ {} 4 x y^{\prime \prime }+4 y-\left (x +2\right ) y+l y = 0 \]

11120

\[ {} 4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \]

11121

\[ {} 16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \]

11122

\[ {} a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

11123

\[ {} a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \]

11124

\[ {} 5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y = 0 \]

11125

\[ {} 2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \]

11126

\[ {} 2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \]

11127

\[ {} \left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0 \]

11128

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

11129

\[ {} x^{2} y^{\prime \prime }-12 y = 0 \]

11130

\[ {} x^{2} y^{\prime \prime }+a y = 0 \]

11131

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

11132

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

11133

\[ {} x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

11134

\[ {} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

11135

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0 \]

11136

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

11137

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

11138

\[ {} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

11139

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

11140

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

11141

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y-a \,x^{2} = 0 \]

11142

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \]

11143

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \]

11144

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \]

11145

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

11146

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \]

11147

\[ {} x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

11148

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

11149

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \]

11150

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

11151

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \]

11152

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a \,x^{2}+b \right ) y = 0 \]

11153

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \]

11154

\[ {} x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0 \]

11155

\[ {} x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \]

11156

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

11157

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

11158

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11159

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

11160

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

11161

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (a^{2} x^{2}+2\right ) y = 0 \]

11162

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

11163

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

11164

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

11165

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-\ln \left (x \right ) x^{2} = 0 \]

11166

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

11167

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \]

11168

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \left (x \right ) x^{3} = 0 \]

11169

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]