4.24.18 Problems 1701 to 1800

Table 4.1045: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

9975

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

9976

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \]

9977

\[ {} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

9978

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

9979

\[ {} x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

9980

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

9981

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

9982

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

9983

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9984

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

9985

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9986

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

9987

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

9988

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

9989

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9990

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

9992

\[ {} y^{\prime \prime } = \frac {2 y}{x^{2}} \]

9993

\[ {} y^{\prime \prime } = \frac {6 y}{x^{2}} \]

9994

\[ {} y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

9995

\[ {} y^{\prime \prime } = \frac {20 y}{x^{2}} \]

9996

\[ {} y^{\prime \prime } = \frac {12 y}{x^{2}} \]

9997

\[ {} y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

9998

\[ {} x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

9999

\[ {} y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

10000

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]

10001

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

10002

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

10003

\[ {} y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \]

10004

\[ {} y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \]

10005

\[ {} y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \]

10006

\[ {} y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \]

10007

\[ {} y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

10008

\[ {} y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \]

10009

\[ {} y^{\prime \prime } = -\frac {y}{4 x^{2}} \]

10010

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

10011

\[ {} x^{2} y^{\prime \prime } = 2 y \]

10012

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

10013

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

10014

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

11006

\[ {} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

11007

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

11008

\[ {} y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

11009

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

11010

\[ {} y^{\prime \prime }-c \,x^{a} y = 0 \]

11011

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

11012

\[ {} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

11013

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

11014

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

11015

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

11016

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

11017

\[ {} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

11018

\[ {} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

11019

\[ {} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

11020

\[ {} y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

11021

\[ {} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

11022

\[ {} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

11023

\[ {} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

11024

\[ {} y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

11025

\[ {} y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

11028

\[ {} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

11029

\[ {} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

11030

\[ {} y^{\prime \prime }+x y^{\prime }+y = 0 \]

11031

\[ {} y^{\prime \prime }+x y^{\prime }-y = 0 \]

11032

\[ {} y^{\prime \prime }+x y^{\prime }+\left (n +1\right ) y = 0 \]

11033

\[ {} y^{\prime \prime }+x y^{\prime }-n y = 0 \]

11034

\[ {} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

11035

\[ {} y^{\prime \prime }-x y^{\prime }-a y = 0 \]

11036

\[ {} y^{\prime \prime }-x y^{\prime }+\left (x -1\right ) y = 0 \]

11037

\[ {} y^{\prime \prime }-2 x y^{\prime }+a y = 0 \]

11038

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

11039

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (3 x^{2}+2 n -1\right ) y = 0 \]

11040

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

11041

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

11042

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

11043

\[ {} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

11044

\[ {} y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

11045

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

11046

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

11047

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

11048

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-\left (1+x \right )^{2} y = 0 \]

11049

\[ {} y^{\prime \prime }-x^{2} \left (1+x \right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

11050

\[ {} y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

11051

\[ {} y^{\prime \prime }+a \,x^{q -1} y^{\prime }+b \,x^{q -2} y = 0 \]

11052

\[ {} y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

11053

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

11054

\[ {} y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0 \]

11056

\[ {} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

11057

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

11058

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-\cos \left (x \right )^{2} y = 0 \]

11059

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y = 0 \]

11060

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2} = 0 \]

11061

\[ {} y^{\prime \prime }+a y^{\prime } \tan \left (x \right )+b y = 0 \]

11062

\[ {} y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0 \]

11063

\[ {} y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

11064

\[ {} y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

11065

\[ {} y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0 \]

11066

\[ {} y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

11067

\[ {} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

11068

\[ {} 4 y^{\prime \prime }+9 x y = 0 \]

11069

\[ {} 4 y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]