5.3.71 Problems 7001 to 7100

Table 5.187: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

22891

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1}{x^{2}} \]

22899

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

22914

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (\sin \left (x \right )+1\right ) y = 0 \]

22917

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0 \]

22921

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right ) \]

22933

\[ {} t y^{\prime \prime }-t y^{\prime }+y = 0 \]

22961

\[ {} y^{\prime \prime }+x y = \sin \left (x \right ) \]

22978

\[ {} U^{\prime \prime }+\frac {2 U^{\prime }}{r}+a U = 0 \]

22979

\[ {} y^{\prime \prime }-x y^{\prime }-y = 5 \sqrt {x} \]

22980

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 2 x \]

22982

\[ {} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 4 x^{2} \]

22986

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

22991

\[ {} x y^{\prime \prime }+y^{\prime }-i x y = 0 \]

23005

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -\sin \left (t \right ), x^{\prime }\left (t \right )-3 x \left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = 4 \cos \left (t \right )] \]

23008

\[ {} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = \sin \left (t \right )] \]

23010

\[ {} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t] \]

23013

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )] \]

23014

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 1+y \left (t \right )^{2}, z^{\prime }\left (t \right ) = z \left (t \right )] \]

23015

\[ {} [t^{2} y^{\prime \prime }\left (t \right )+t z^{\prime }\left (t \right )+z \left (t \right ) = t, t y^{\prime }\left (t \right )+z \left (t \right ) = \ln \left (t \right )] \]

23048

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right )-z \left (t \right ) = t^{2}, y^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right )+4 z \left (t \right ) = {\mathrm e}^{t}, z^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right )-z \left (t \right ) = 0] \]

23108

\[ {} x y^{\prime }-2 y \cos \left (x \right ) = {\mathrm e}^{x} \sin \left (x \right )^{3} \]

23162

\[ {} \left (1-y^{2}\right ) y^{\prime \prime } = y^{\prime } \]

23164

\[ {} y^{\prime \prime } {y^{\prime }}^{2}-x^{2} = 0 \]

23197

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = \sqrt {x} \]

23217

\[ {} y+x y^{\prime \prime } = x \,{\mathrm e}^{x} \]

23222

\[ {} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}} \]

23225

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {y-y^{\prime }}{x} \]

23233

\[ {} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+y\right ) \]

23239

\[ {} y^{\prime } = \sqrt {y} \]

23243

\[ {} x^{\prime } = \frac {a x^{{5}/{6}}}{\left (-B t +b \right )^{{3}/{2}}} \]

23249

\[ {} y^{\prime } = x^{2}+y^{2} \]

23257

\[ {} y y^{\prime } = y+x^{2} \]

23262

\[ {} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0 \]

23272

\[ {} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3} \]

23279

\[ {} y y^{\prime }-7 y = 6 x \]

23300

\[ {} y \,{\mathrm e}^{x y}+\left (x \,{\mathrm e}^{x y}+1\right ) y^{\prime } = 0 \]

23302

\[ {} y+\cos \left (x \right )+\left (x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

23304

\[ {} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0 \]

23305

\[ {} 2 x -y \sin \left (x y\right )+\left (6 y^{2}-x \sin \left (x y\right )\right ) y^{\prime } = 0 \]

23317

\[ {} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0 \]

23323

\[ {} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

23325

\[ {} {\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime } = 0 \]

23327

\[ {} x y+1+y^{2} y^{\prime } = 0 \]

23334

\[ {} y^{\prime } = \frac {x -y+5}{2 x -y-3} \]

23338

\[ {} y^{\prime } = -\frac {2 y+x}{y} \]

23340

\[ {} y^{\prime } = \frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2} \]

23344

\[ {} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{2 y} \]

23350

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime } = 0 \]

23351

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}} = 0 \]

23352

\[ {} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{y} \]

23356

\[ {} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x} \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]

23358

\[ {} y^{\prime \prime }+\cos \left (y\right ) = 0 \]

23359

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3 \]

23360

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

23361

\[ {} y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x^{2}} = 1 \]

23362

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

23364

\[ {} y^{\prime }+\sqrt {y} = 3 x \]

23371

\[ {} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1 \]

23373

\[ {} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0 \]

23394

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23395

\[ {} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y = 0 \]

23403

\[ {} y+x y^{\prime \prime } = 0 \]

23405

\[ {} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23406

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2 \]

23407

\[ {} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0 \]

23408

\[ {} y y^{\prime }+y^{\prime \prime } = 2 \]

23410

\[ {} y^{\prime \prime } \cos \left (x \right )+3 y = 1 \]

23411

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0 \]

23413

\[ {} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x} \]

23414

\[ {} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0 \]

23415

\[ {} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right ) \]

23416

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0 \]

23424

\[ {} 6 y^{\prime \prime \prime }-4 i y^{\prime \prime }+\left (3+i\right ) y^{\prime }-2 y = 0 \]

23470

\[ {} y^{\prime \prime }+y = 0 \]

23515

\[ {} 3 x y^{\prime \prime }-4 y^{\prime }+\frac {5 y}{x} = 0 \]

23521

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2}-x \right ) y^{\prime }-2 x y = 0 \]

23522

\[ {} x^{3} y^{\prime \prime }+\left (5 x^{3}-x^{2}\right ) y^{\prime }+2 \left (3 x^{3}-x^{2}\right ) y = 0 \]

23524

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

23525

\[ {} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }+\left (3-12 x \right ) y = 0 \]

23526

\[ {} x^{2} \left (1-\ln \left (x \right )\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23529

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

23530

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

23531

\[ {} x \left (x -2\right ) y^{\prime \prime }-2 \left (x^{2}-3 x +3\right ) y^{\prime }+\left (x^{2}-4 x +6\right ) y = 0 \]

23532

\[ {} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y = 0 \]

23534

\[ {} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = 0 \]

23535

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23536

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

23537

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23538

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

23539

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23540

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23541

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+3 y = 0 \]

23542

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23543

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23544

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

23545

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

23546

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

23547

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

23550

\[ {} y^{\prime \prime \prime }-\sin \left (x \right ) y = 0 \]