| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (\sin \left (x \right )+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} U^{\prime \prime }+\frac {2 U^{\prime }}{r}+a U = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 5 \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 4 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-8\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-i x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -\sin \left (t \right ), x^{\prime }\left (t \right )-3 x \left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = 4 \cos \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = \sin \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ) z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 1+y \left (t \right )^{2}, z^{\prime }\left (t \right ) = z \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [t^{2} y^{\prime \prime }\left (t \right )+t z^{\prime }\left (t \right )+z \left (t \right ) = t, t y^{\prime }\left (t \right )+z \left (t \right ) = \ln \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right )-z \left (t \right ) = t^{2}, y^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right )+4 z \left (t \right ) = {\mathrm e}^{t}, z^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right )-z \left (t \right ) = 0]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-2 y \cos \left (x \right ) = {\mathrm e}^{x} \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-y^{2}\right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } {y^{\prime }}^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {y-y^{\prime }}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = \frac {a x^{{5}/{6}}}{\left (-B t +b \right )^{{3}/{2}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = y+x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-7 y = 6 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{x y}+\left (x \,{\mathrm e}^{x y}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\cos \left (x \right )+\left (x +\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x -y \sin \left (x y\right )+\left (6 y^{2}-x \sin \left (x y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y+1+y^{2} y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -y+5}{2 x -y-3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {2 y+x}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x^{2}} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+\sqrt {y} = 3 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )+3 y = 1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 6 y^{\prime \prime \prime }-4 i y^{\prime \prime }+\left (3+i\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x y^{\prime \prime }-4 y^{\prime }+\frac {5 y}{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (2 x^{2}-x \right ) y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+\left (5 x^{3}-x^{2}\right ) y^{\prime }+2 \left (3 x^{3}-x^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }+\left (3-12 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (1-\ln \left (x \right )\right ) y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -2\right ) y^{\prime \prime }-2 \left (x^{2}-3 x +3\right ) y^{\prime }+\left (x^{2}-4 x +6\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|