2.4.19 second order bessel ode

Table 2.487: second order bessel ode

#

ODE

CAS classification

Solved?

514

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

517

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

518

\[ {}36 x^{2} y^{\prime \prime }+60 y^{\prime } x +\left (9 x^{3}-5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

519

\[ {}16 x^{2} y^{\prime \prime }+24 y^{\prime } x +\left (144 x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

520

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

521

\[ {}4 x^{2} y^{\prime \prime }-12 y^{\prime } x +\left (15+16 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

523

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

[[_Emden, _Fowler]]

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

1350

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1818

\[ {}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1821

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1824

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1825

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1826

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1831

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2410

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

[[_Emden, _Fowler]]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6084

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6085

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6086

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6088

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

6410

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6412

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

6697

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6763

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6764

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6765

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6769

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6770

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

7482

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

[[_Emden, _Fowler]]

7498

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7545

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7686

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8287

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8288

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

8289

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8290

\[ {}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8291

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

8292

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

8293

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8294

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8295

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8296

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8297

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

8298

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

8299

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

[_Lienard]

8300

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

8301

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8302

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8303

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

8304

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8305

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

8306

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

8308

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8309

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8310

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8626

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8657

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8835

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8839

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8840

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8841

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8842

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8843

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8844

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8845

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8852

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8854

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8965

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9139

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9141

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9146

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9147

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9157

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9160

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9161

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9168

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

11024

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

[[_Emden, _Fowler]]

11027

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11028

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11042

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11043

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11092

\[ {}4 y^{\prime \prime }+9 x y = 0 \]

[[_Emden, _Fowler]]

11097

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11100

\[ {}x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

11101

\[ {}x y^{\prime \prime }+y^{\prime }+l x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11103

\[ {}x y^{\prime \prime }-y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

11104

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11106

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11107

\[ {}x y^{\prime \prime }+2 y^{\prime }+y a x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11108

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0 \]

[[_Emden, _Fowler]]

11109

\[ {}x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

11110

\[ {}x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

11111

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11112

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

[[_Emden, _Fowler]]

11136

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11141

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11146

\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

11155

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11156

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11157

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11158

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11159

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11161

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11167

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11168

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

11169

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11170

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11173

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (a \,x^{m}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11175

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a x -b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11176

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11182

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11183

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11184

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11185

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11186

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11191

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11195

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11277

\[ {}4 x^{2} y^{\prime \prime }+\left (4 a^{2} x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11279

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-v^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11281

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11282

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11293

\[ {}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11294

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x -\left (4 x +5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11346

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

11351

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]

[[_Emden, _Fowler]]

11354

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11404

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x}-\frac {a y}{x^{6}} \]

[[_Emden, _Fowler]]

11673

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12507

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

12561

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12562

\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

12563

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12567

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

12611

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12612

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12613

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12616

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12618

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12624

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12625

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12626

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

12627

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y = 0 \]

[[_Bessel, _modified]]

12628

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12629

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12630

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12632

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12682

\[ {}x^{3} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12711

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12739

\[ {}x^{6} y^{\prime \prime }-x^{5} y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

12765

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12766

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12772

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12773

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12774

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12972

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12976

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12980

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12983

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13662

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13670

\[ {}t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

[[_Emden, _Fowler]]

13915

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13958

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

14146

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

14147

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

14148

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

14153

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15303

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15306

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15524

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17163

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17167

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17216

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17217

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17218

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17219

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17220

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17221

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17222

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

17223

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17545

\[ {}y^{\prime \prime }+t y = 0 \]

[[_Emden, _Fowler]]

17548

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

17550

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

unknown

17557

\[ {}t y^{\prime \prime }+3 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17702

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17996

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

18032

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

18034

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

[_Lienard]

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18261

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

[[_2nd_order, _with_linear_symmetries]]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19015

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19016

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19447

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19448

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

19455

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19458

\[ {}x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19461

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19484

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19487

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19493

\[ {}y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19500

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19622

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19628

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19629

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]