5.7.7 Problems 601 to 700

Table 5.575: Solved using series method

#

ODE

Mathematica

Maple

3362

\[ {}9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3363

\[ {}4 x^{2} \left (1-x \right ) y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y = 0 \]

3364

\[ {}2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

3365

\[ {}4 x^{2} \left (1+x \right ) y^{\prime \prime }-5 x y^{\prime }+2 y = 0 \]

3366

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y = 0 \]

3367

\[ {}\left (8-x \right ) x^{2} y^{\prime \prime }+6 x y^{\prime }-y = 0 \]

3368

\[ {}2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (1+x \right ) y = 0 \]

3369

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

3370

\[ {}3 x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

3371

\[ {}x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0 \]

3372

\[ {}2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \]

3373

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

3374

\[ {}x y^{\prime \prime }+y^{\prime }+2 x y = 0 \]

3375

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \]

3376

\[ {}x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0 \]

3377

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \]

3378

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

3379

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

3380

\[ {}x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y = 0 \]

3381

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

3382

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \]

3383

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-9 y = 0 \]

3384

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

3385

\[ {}x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \]

3386

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \]

3387

\[ {}x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \]

3388

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

3389

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

3390

\[ {}x y^{\prime \prime }+y^{\prime }-2 x y = x^{2} \]

3391

\[ {}x y^{\prime \prime }-x y^{\prime }+y = x^{3} \]

3392

\[ {}\left (1-2 x \right ) y^{\prime \prime }+4 x y^{\prime }-4 y = x^{2}-x \]

3393

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +12\right ) y = x^{2}+x \]

3394

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \]

3395

\[ {}3 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \]

3396

\[ {}9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y = x^{4}+x^{2} \]

3397

\[ {}9 x^{2} y^{\prime \prime }+10 x y^{\prime }+y = x -1 \]

3398

\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \]

3399

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 6 \left (-x^{2}+1\right )^{2} \]

3400

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+2 y = x^{2} \left (x +2\right )^{2} \]

3401

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = x \left (x^{2}+x +1\right ) \]

3402

\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-x y^{\prime }+\left (1-x \right ) y = x^{2} \left (1+x \right )^{2} \]

3501

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

3502

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

3503

\[ {}z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \]

3504

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

3505

\[ {}z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \]

3506

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

3507

\[ {}y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \]

3508

\[ {}z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

3509

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

3510

\[ {}\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \]

3511

\[ {}\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \]

3512

\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

3513

\[ {}z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

3514

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \]

3986

\[ {}y^{\prime \prime }-y = 0 \]

3987

\[ {}y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

3988

\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

3989

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0 \]

3990

\[ {}y^{\prime \prime }+x y = 0 \]

3991

\[ {}y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

3992

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

3993

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0 \]

3994

\[ {}\left (x^{2}-3\right ) y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

3995

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

3996

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

3997

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

3998

\[ {}y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

3999

\[ {}y^{\prime \prime }+x y^{\prime }+\left (x +2\right ) y = 0 \]

4000

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

4001

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }-x y = 0 \]

4002

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

4003

\[ {}4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

4004

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 2 \cos \left (x \right ) \]

4005

\[ {}y^{\prime \prime }+x y^{\prime }-4 y = 6 \,{\mathrm e}^{x} \]

4006

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{1-x}+x y = 0 \]

4007

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y = 0 \]

4008

\[ {}\left (x -2\right )^{2} y^{\prime \prime }+\left (x -2\right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x} = 0 \]

4009

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

4010

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y = 0 \]

4011

\[ {}4 x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }-y = 0 \]

4012

\[ {}4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

4013

\[ {}x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 y \,{\mathrm e}^{2 x} = 0 \]

4014

\[ {}4 x^{2} y^{\prime \prime }+3 x y^{\prime }+x y = 0 \]

4015

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

4016

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +2\right ) y = 0 \]

4017

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 x y = 0 \]

4018

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

4019

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

4020

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (5+x \right ) y = 0 \]

4021

\[ {}3 x^{2} y^{\prime \prime }+x \left (7+3 x \right ) y^{\prime }+\left (6 x +1\right ) y = 0 \]

4022

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1-x \right ) y = 0 \]

4023

\[ {}3 x^{2} y^{\prime \prime }+x \left (3 x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

4024

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

4025

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

4026

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

4027

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

4028

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +4\right ) y = 0 \]

4029

\[ {}x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y = 0 \]

4030

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]