6.134 Problems 13301 to 13400

Table 6.267: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13301

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = c y^{2}-b \,x^{m -1} y+a \,x^{n -2} \]

13302

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = a \,x^{n -2} y^{2}+b \,x^{m -1} y+c \]

13303

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = \alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \]

13304

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) \left (x y^{\prime }-y\right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right ) = 0 \]

13305

\[ {} y^{\prime } = a y^{2}+b \,{\mathrm e}^{\lambda x} \]

13306

\[ {} y^{\prime } = y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

13307

\[ {} y^{\prime } = \sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \]

13308

\[ {} y^{\prime } = \sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \]

13309

\[ {} y^{\prime } = y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \]

13310

\[ {} y^{\prime } = y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \]

13311

\[ {} y^{\prime } = y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \]

13312

\[ {} y^{\prime } = y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \]

13313

\[ {} y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \]

13314

\[ {} y^{\prime } = b \,{\mathrm e}^{x \mu } y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

13315

\[ {} y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \]

13316

\[ {} y^{\prime } = a \,{\mathrm e}^{x \mu } y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

13317

\[ {} y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{x \mu } y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

13318

\[ {} y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{x \mu } y-a \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \]

13319

\[ {} y^{\prime } = a \,{\mathrm e}^{x \mu } y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \]

13320

\[ {} y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{s x}+d \,{\mathrm e}^{-k x} \]

13321

\[ {} y^{\prime } = a \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y^{2}+\left (b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}-\lambda \right ) y+c \,{\mathrm e}^{x \mu } \]

13322

\[ {} y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x} \]

13323

\[ {} y^{\prime } = {\mathrm e}^{x \mu } \left (y-b \,{\mathrm e}^{\lambda x}\right )^{2}+b \lambda \,{\mathrm e}^{\lambda x} \]

13324

\[ {} \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime } = y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \]

13325

\[ {} \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} {\mathrm e}^{\lambda x}+b \,\mu ^{2} {\mathrm e}^{x \mu } = 0 \]

13326

\[ {} y^{\prime } = y^{2}+a x \,{\mathrm e}^{\lambda x} y+{\mathrm e}^{\lambda x} a \]

13327

\[ {} y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \]

13328

\[ {} y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \]

13329

\[ {} y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \]

13330

\[ {} y^{\prime } = -\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \]

13331

\[ {} y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \]

13332

\[ {} y^{\prime } = a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

13333

\[ {} y^{\prime } = a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

13334

\[ {} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \]

13335

\[ {} y^{\prime } = -\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} {\mathrm e}^{\lambda x} y-{\mathrm e}^{\lambda x} a \]

13336

\[ {} y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \]

13337

\[ {} y^{\prime } = a \,x^{n} {\mathrm e}^{2 \lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-\lambda \right ) y+c \,x^{n} \]

13338

\[ {} y^{\prime } = a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13339

\[ {} x y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \]

13340

\[ {} x y^{\prime } = a \,x^{2 n} {\mathrm e}^{\lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-n \right ) y+c \,{\mathrm e}^{\lambda x} \]

13341

\[ {} y^{\prime } = y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \]

13342

\[ {} y^{\prime } = a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+a \,b^{2} \]

13343

\[ {} y^{\prime } = a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \]

13344

\[ {} x^{4} \left (y^{\prime }-y^{2}\right ) = a +b \,{\mathrm e}^{\frac {k}{x}}+c \,{\mathrm e}^{\frac {2 k}{x}} \]

13345

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \sinh \left (\lambda x \right )-a^{2} \sinh \left (\lambda x \right )^{2} \]

13346

\[ {} y^{\prime } = y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \]

13347

\[ {} y^{\prime } = y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \]

13348

\[ {} y^{\prime } = \lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \]

13349

\[ {} y^{\prime } = \left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \]

13350

\[ {} \left (\sinh \left (\lambda x \right ) a +b \right ) y^{\prime } = y^{2}+c \sinh \left (x \mu \right ) y-d^{2}+c d \sinh \left (x \mu \right ) \]

13351

\[ {} \left (\sinh \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right ) = 0 \]

13352

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \]

13353

\[ {} y^{\prime } = y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \]

13354

\[ {} y^{\prime } = y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \]

13355

\[ {} y^{\prime } = \left (a \cosh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right )^{2} \]

13356

\[ {} 2 y^{\prime } = \left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \]

13357

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+a \cosh \left (\lambda x \right )^{n} \sinh \left (\lambda x \right )^{-n -4} \]

13358

\[ {} y^{\prime } = a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \]

13359

\[ {} y^{\prime } = a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \]

13360

\[ {} \left (a \cosh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cosh \left (x \mu \right ) y-d^{2}+c d \cosh \left (x \mu \right ) \]

13361

\[ {} \left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right ) = 0 \]

13362

\[ {} y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

13363

\[ {} y^{\prime } = y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

13364

\[ {} y^{\prime } = y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \]

13365

\[ {} \left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \tanh \left (x \mu \right ) y-d^{2}+c d \tanh \left (x \mu \right ) \]

13366

\[ {} y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13367

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13368

\[ {} y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

13369

\[ {} \left (a \coth \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \coth \left (x \mu \right ) y-d^{2}+c d \coth \left (x \mu \right ) \]

13370

\[ {} y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

13371

\[ {} y^{\prime } = y^{2}+a \lambda +b \lambda -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13372

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \]

13373

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )+c \]

13374

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2+2 k} \]

13375

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \]

13376

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1} \]

13377

\[ {} x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \]

13378

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

13379

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \]

13380

\[ {} x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

13381

\[ {} y^{\prime } = y^{2}+a \ln \left (\beta x \right ) y-a b \ln \left (\beta x \right )-b^{2} \]

13382

\[ {} y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

13383

\[ {} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

13384

\[ {} y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

13385

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

13386

\[ {} y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13387

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \]

13388

\[ {} x y^{\prime } = \left (a y+b \ln \left (x \right )\right )^{2} \]

13389

\[ {} x y^{\prime } = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

13390

\[ {} x y^{\prime } = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

13391

\[ {} x y^{\prime } = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

13392

\[ {} x^{2} y^{\prime } = y^{2} a^{2} x^{2}-x y+b^{2} \ln \left (x \right )^{n} \]

13393

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \]

13394

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = \ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+\lambda c \]

13395

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

13396

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]

13397

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4} \]

13398

\[ {} y^{\prime } = y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \]

13399

\[ {} y^{\prime } = y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m} \]

13400

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \]