6.133 Problems 13201 to 13300

Table 6.265: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13221

\[ {} y^{\prime } = f \left (x \right ) \]

13222

\[ {} y^{\prime } = f \left (y\right ) \]

13223

\[ {} y^{\prime } = f \left (x \right ) g \left (y\right ) \]

13224

\[ {} g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

13225

\[ {} g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \]

13226

\[ {} y^{\prime } = f \left (\frac {y}{x}\right ) \]

13227

\[ {} y^{\prime } = a y^{2}+b x +c \]

13228

\[ {} y^{\prime } = y^{2}-a^{2} x^{2}+3 a \]

13229

\[ {} y^{\prime } = y^{2}+a^{2} x^{2}+b x +c \]

13230

\[ {} y^{\prime } = a y^{2}+b \,x^{n} \]

13231

\[ {} y^{\prime } = y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \]

13232

\[ {} y^{\prime } = a y^{2}+b \,x^{2 n}+c \,x^{n -1} \]

13233

\[ {} y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \]

13234

\[ {} y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \]

13235

\[ {} y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4} \]

13236

\[ {} y^{\prime } = a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \]

13237

\[ {} y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \]

13238

\[ {} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \]

13239

\[ {} x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

13240

\[ {} x^{2} y^{\prime } = x^{2} y^{2}-x^{4} a^{2}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \]

13241

\[ {} x^{2} y^{\prime } = a \,x^{2} y^{2}+b \,x^{n}+c \]

13242

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4} \]

13243

\[ {} \left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \]

13244

\[ {} x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

13245

\[ {} a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \]

13246

\[ {} \left (x^{2} a +b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

13247

\[ {} x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \]

13248

\[ {} \left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \]

13249

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \]

13250

\[ {} y^{\prime } = a y^{2}+b y+c x +k \]

13251

\[ {} y^{\prime } = y^{2}+a \,x^{n} y+a \,x^{n -1} \]

13252

\[ {} y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \]

13253

\[ {} y^{\prime } = y^{2}+\left (x \alpha +\beta \right ) y+x^{2} a +b x +c \]

13254

\[ {} y^{\prime } = y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \]

13255

\[ {} y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +m +1}-a \,x^{m} \]

13256

\[ {} y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+b c \,x^{m}-a \,c^{2} x^{n} \]

13257

\[ {} y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

13258

\[ {} y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \]

13259

\[ {} y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \]

13260

\[ {} x y^{\prime } = a y^{2}+b y+c \,x^{2 b} \]

13261

\[ {} x y^{\prime } = a y^{2}+b y+c \,x^{n} \]

13262

\[ {} x y^{\prime } = a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \]

13263

\[ {} x y^{\prime } = x y^{2}+a y+b \,x^{n} \]

13264

\[ {} x y^{\prime }+a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \]

13265

\[ {} x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{-n} \]

13266

\[ {} x y^{\prime } = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \]

13267

\[ {} x y^{\prime } = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \]

13268

\[ {} x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{m} \]

13269

\[ {} x y^{\prime } = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \]

13270

\[ {} x y^{\prime } = a \,x^{2 n +m} y^{2}+\left (b \,x^{m +n}-n \right ) y+c \,x^{m} \]

13271

\[ {} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \]

13272

\[ {} \left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \]

13273

\[ {} 2 x^{2} y^{\prime } = 2 y^{2}+x y-2 a^{2} x \]

13274

\[ {} 2 x^{2} y^{\prime } = 2 y^{2}+3 x y-2 a^{2} x \]

13275

\[ {} x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

13276

\[ {} x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (x^{2} a +b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \]

13277

\[ {} x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{n}+s \]

13278

\[ {} x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \]

13279

\[ {} x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \]

13280

\[ {} x^{2} y^{\prime } = \left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \]

13281

\[ {} \left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 x y+y^{2}\right ) = 0 \]

13282

\[ {} \left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha } = 0 \]

13283

\[ {} \left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma = 0 \]

13284

\[ {} \left (x^{2} a +b \right ) y^{\prime }+y^{2}-2 x y+\left (1-a \right ) x^{2}-b = 0 \]

13285

\[ {} \left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \]

13286

\[ {} \left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \]

13287

\[ {} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \]

13288

\[ {} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \]

13289

\[ {} \left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

13290

\[ {} \left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \]

13291

\[ {} x^{3} y^{\prime } = x^{3} a y^{2}+\left (b \,x^{2}+c \right ) y+s x \]

13292

\[ {} x^{3} y^{\prime } = x^{3} a y^{2}+x \left (b x +c \right ) y+x \alpha +\beta \]

13293

\[ {} x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \]

13294

\[ {} x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+x \alpha +\beta = 0 \]

13295

\[ {} \left (x^{2} a +b x +e \right ) \left (x y^{\prime }-y\right )-y^{2}+x^{2} = 0 \]

13296

\[ {} x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \]

13297

\[ {} a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0 \]

13298

\[ {} x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+b \,x^{n} y+c \,x^{m}+d \]

13299

\[ {} x \left (a \,x^{k}+b \right ) y^{\prime } = \alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \]

13300

\[ {} x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s = 0 \]