| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = -\frac {y}{t}+\cos \left (t^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 25 \cos \left (4 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t \left (t +1\right ) y^{\prime } = y+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime } = 2 t \left (z-t^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = b
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (t \right ) y+y^{\prime } = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{t +1} = \left (t +1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{t} = \frac {t +1}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = {\mathrm e}^{-a t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = {\mathrm e}^{b t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = t^{n} {\mathrm e}^{-a t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+2 y \ln \left (t \right ) = 4 \ln \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {n y}{t} = {\mathrm e}^{t} t^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+3 y = t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime }+2 t y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime } = y^{2}+t y+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {4 t -3 y}{-y+t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y^{2}-4 t y+6 t^{2}}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}+2 t y}{t^{2}+t y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {3 y^{2}-t^{2}}{2 t y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t^{2}+y^{2}}{t y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime } = y+\sqrt {t^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime } = t y+y \sqrt {t^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y+y^{\prime } = t y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y+y^{\prime } = t^{3} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime }-t y = 5 t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{t}+y^{\prime } = y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+t y^{2} = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = y^{2}+t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = t y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{2 t -2 y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (-y+t \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{\left (y+t \right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (-y+t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = y^{2}+t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \ln \left (y\right ) = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -{\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 t +2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y-t +\left (t +2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}+2 t y y^{\prime }+3 t^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y-5 t +2 y y^{\prime }-t y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t y+\left (t^{2}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 t y+2 t^{3}+\left (t^{2}-y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2}-y-t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{3}-t \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a t +b y-\left (c t +d y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {-y+t}{y+t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t +y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{3}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+\left (-y+t \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {-y+t}{y+t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {-y+t}{y+t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (y+t \right )
\]
|
✓ |
✗ |
✓ |
|
| \[
{} t y^{\prime } = 2 y-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime } = 2 y-t
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = {\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = {\mathrm e}^{-a t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = 3 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = t \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 9 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = 150 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 4 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 4 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 50 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 2 \cos \left (t \right )+\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 4 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 36 t \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|