|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime } = 2 x y^{2}+3 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} -2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y+y^{\prime } = 2 x \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} -2 x y+y^{\prime } = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y+x y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 10 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 10 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+3 x y^{\prime } = 12 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} -3 y+2 x y^{\prime } = 9 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = 3 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y+x y^{\prime } = 2 x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} -3 y+x y^{\prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (1-y\right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+\left (1+x \right ) y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = \cos \left (x \right ) x^{3}+2 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cot \left (x \right ) y+y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x +y+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = x^{4} \cos \left (x \right )+3 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 x^{2} {\mathrm e}^{x^{2}}+2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-3+2 x \right ) y+x y^{\prime } = 4 x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y+\left (x^{2}+4\right ) y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{3} y+\left (x^{2}+1\right ) y^{\prime } = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +y\right ) y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y+2 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -y\right ) y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x +y\right ) y^{\prime } = y \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +2 y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2} y^{\prime } = x^{3}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = {\mathrm e}^{\frac {y}{x}} x^{2}+x y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime } = x y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = x^{2}+3 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime } = y+\sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y y^{\prime } = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (3 x +y\right )+x \left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {x +y+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (4 x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y+x^{2} y^{\prime } = 5 y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{3}+y^{2} y^{\prime } = 6 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y+x^{2} y^{\prime } = 5 y^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 y+x y^{\prime } = 3 x y^{{4}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3} {\mathrm e}^{-2 x}+2 x y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} \left (x y^{\prime }+y\right ) \sqrt {x^{4}+1} = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3}+3 y^{2} y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y^{2} y^{\prime } = 3 x^{4}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 \,{\mathrm e}^{2 x} x^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left ({\mathrm e}^{y}+x \right ) y^{\prime } = -1+x \,{\mathrm e}^{-y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +3 y+\left (2 y+3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x^{2}+2 x y^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 1+{\mathrm e}^{x y} y+\left (2 y+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3}+3 y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{2}+x y^{2}-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y+y^{2}-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 y+x^{4} y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{2}+x^{2} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y+x^{3} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y+x^{2} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y+x y^{\prime } = 6 x^{2} \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = x y+3 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{3} y^{\prime } = x^{2} y-y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y+y^{\prime } = 3 x^{2} {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-2 x y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x}+{\mathrm e}^{x y} y+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x^{2} y-x^{3} y^{\prime } = y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y+x y^{\prime } = \frac {3}{x^{{3}/{2}}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y+\left (x^{2}-1\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 12 x^{4} y^{{2}/{3}}+6 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{y}+\cos \left (x \right ) y+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y+\left (1+x \right ) y^{\prime } = 3+3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 3 y+x^{3} y^{4}+3 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = 2 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+\left (2 x +1\right ) y^{\prime } = \left (2 x +1\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 x^{2} \left (7+y\right )
\]
|
✓ |
✓ |
✓ |
|