5.9.54 Problems 5301 to 5400

Table 5.735: First order ode linear in derivative

#

ODE

Mathematica

Maple

13956

\[ {}y^{\prime } = \ln \left (x y\right ) \]

13957

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

13964

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

13966

\[ {}y y^{\prime } = 1 \]

13968

\[ {}5 y^{\prime }-x y = 0 \]

14053

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

14057

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]

14059

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

14060

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]

14080

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

14154

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

14162

\[ {}-x y^{\prime }+y = 0 \]

14163

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

14165

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

14169

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

14171

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14172

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14173

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14174

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

14175

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

14176

\[ {}y+x +x y^{\prime } = 0 \]

14177

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

14178

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

14179

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

14180

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

14181

\[ {}t -s+t s^{\prime } = 0 \]

14182

\[ {}y^{2} y^{\prime } x = y^{3}+x^{3} \]

14183

\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) \]

14184

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

14185

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

14186

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

14187

\[ {}\frac {-x y^{\prime }+y}{\sqrt {x^{2}+y^{2}}} = m \]

14188

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

14190

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

14191

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \]

14192

\[ {}y^{\prime }-\frac {a y}{x} = \frac {1+x}{x} \]

14193

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

14194

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

14195

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

14196

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

14197

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

14198

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

14199

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

14200

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

14201

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

14202

\[ {}3 y^{\prime } y^{2}-a y^{3}-x -1 = 0 \]

14203

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

14204

\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \]

14205

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

14206

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

14207

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

14208

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

14209

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

14210

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

14211

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

14212

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

14213

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

14214

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

14221

\[ {}y = x y^{\prime }+y^{\prime } \]

14224

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

14276

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

14279

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

14280

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

14282

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

14283

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

14284

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14288

\[ {}y^{\prime } = y^{2}+x \]

14289

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]

14311

\[ {}x y^{\prime }-y = 0 \]

14315

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

14316

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

14317

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

14318

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

14319

\[ {}y^{\prime }-y^{2} = 1 \]

14321

\[ {}x y^{\prime }-\sin \left (x \right ) = 0 \]

14322

\[ {}y^{\prime }+3 y = 0 \]

14326

\[ {}2 x y^{\prime }-y = 0 \]

14333

\[ {}y^{\prime }-2 x y = 0 \]

14334

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

14336

\[ {}y^{\prime } = x \sqrt {y} \]

14338

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

14339

\[ {}x \ln \left (x \right ) y^{\prime }-\left (\ln \left (x \right )+1\right ) y = 0 \]

14351

\[ {}y^{\prime } = 1-x \]

14352

\[ {}y^{\prime } = x -1 \]

14353

\[ {}y^{\prime } = 1-y \]

14354

\[ {}y^{\prime } = 1+y \]

14355

\[ {}y^{\prime } = y^{2}-4 \]

14356

\[ {}y^{\prime } = 4-y^{2} \]

14357

\[ {}y^{\prime } = x y \]

14358

\[ {}y^{\prime } = -x y \]

14359

\[ {}y^{\prime } = x^{2}-y^{2} \]

14360

\[ {}y^{\prime } = y^{2}-x^{2} \]

14361

\[ {}y^{\prime } = x +y \]

14362

\[ {}y^{\prime } = x y \]

14363

\[ {}y^{\prime } = \frac {x}{y} \]