6.63 Problems 6201 to 6300

Table 6.125: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

6201

\[ {} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime } = 0 \]

6202

\[ {} \operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime } = 0 \]

6203

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime } = 0 \]

6204

\[ {} 6 x y+\left (-x^{3}+1\right ) y^{\prime \prime } = 0 \]

6205

\[ {} -y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6206

\[ {} x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6207

\[ {} a \,x^{3} y-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6208

\[ {} 4 x y-\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6209

\[ {} 2 x y-2 \left (x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6210

\[ {} -2 x y-2 y^{\prime } \left (-x^{2}+1\right )+x \left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6211

\[ {} -2 x y-2 y^{\prime } \left (-x^{2}+1\right )+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6212

\[ {} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6213

\[ {} \left (a -1\right ) \left (a +b \right ) x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6214

\[ {} 2 \left (1-b \right ) x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6215

\[ {} c x y+\left (a -\left (a +1\right ) x^{2}\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6216

\[ {} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6217

\[ {} -6 x y-y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime } = 0 \]

6218

\[ {} -\left (x^{2}+4 x +2\right ) y-\left (-x^{3}-3 x^{2}+2 x +2\right ) y^{\prime }+x \left (-x^{2}+2\right ) y^{\prime \prime } = 0 \]

6219

\[ {} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x \left (x^{2}+\operatorname {a0} \right ) y^{\prime \prime } = 0 \]

6220

\[ {} -\left (1+x \right )^{3} y+x y^{\prime }+x^{2} \left (1+x \right ) y^{\prime \prime } = 0 \]

6221

\[ {} y-x \left (1+x \right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6222

\[ {} \left (2 x +1\right ) y-x \left (2 x +1\right ) y^{\prime }+x^{2} \left (1+x \right ) y^{\prime \prime } = 0 \]

6223

\[ {} 2 \left (1+x \right ) y+2 \left (2-x \right ) x y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6224

\[ {} \left (6-9 x \right ) y-\left (4-5 x \right ) x y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6225

\[ {} 2 \left (3 x +1\right ) y+2 x \left (2+3 x \right ) y^{\prime }+x^{2} \left (1+x \right ) y^{\prime \prime } = 0 \]

6226

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6227

\[ {} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} \left (\operatorname {a0} +x \right ) y^{\prime \prime } = 0 \]

6228

\[ {} -2 y+\left (1-x \right )^{2} x y^{\prime \prime } = 0 \]

6229

\[ {} y+x \left (1+x \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

6230

\[ {} 2 y+2 \left (2-x \right ) y^{\prime }+\left (2-x \right )^{2} x y^{\prime \prime } = 0 \]

6231

\[ {} \operatorname {a0} \operatorname {a1} \left (-k +x \right ) y+\left (1-\operatorname {a0} +\operatorname {a1} +\operatorname {a0} \operatorname {a2} -\operatorname {a3} +\left (\operatorname {a2} +\operatorname {a3} \right ) x +\left (1+\operatorname {a0} +\operatorname {a1} \right ) x^{2}\right ) y^{\prime }+\left (1-x \right ) \left (a -x \right ) x y^{\prime \prime } = 0 \]

6232

\[ {} \left (\operatorname {c1} x +\operatorname {c0} \right ) y+\left (\operatorname {b2} \,x^{2}+\operatorname {b1} x +\operatorname {b0} \right ) y^{\prime }+\left (\operatorname {a1} -x \right ) \left (\operatorname {a2} -x \right ) \left (\operatorname {a3} -x \right ) y^{\prime \prime } = 0 \]

6233

\[ {} -6 x y+6 x^{2} y^{\prime }+\left (-2 x^{3}+1\right ) y^{\prime \prime } = 0 \]

6234

\[ {} -\left (1+x \right ) y+\left (3-5 x \right ) x y^{\prime }+2 \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6235

\[ {} \left (3-x \right ) y-\left (4-x \right ) x y^{\prime }+2 \left (2-x \right ) x^{2} y^{\prime \prime } = 0 \]

6236

\[ {} -6 x y+2 y^{\prime }+x \left (3 x^{2}+1\right ) y^{\prime \prime } = 0 \]

6237

\[ {} \left (3 x +1\right ) y-4 x^{2} y^{\prime }+4 x^{2} \left (1+x \right ) y^{\prime \prime } = 0 \]

6238

\[ {} 2 \left (b x +3 a \right ) y-2 x \left (b x +2 a \right ) y^{\prime }+x^{2} \left (b x +a \right ) y^{\prime \prime } = 0 \]

6239

\[ {} \left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0 \]

6240

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime } = 0 \]

6241

\[ {} a^{2} y+x^{4} y^{\prime \prime } = 0 \]

6242

\[ {} \left (-2 x^{2}+1\right ) y+x^{4} y^{\prime \prime } = 0 \]

6243

\[ {} -\left (2 x^{2}+1\right ) y+x^{4} y^{\prime \prime } = 0 \]

6244

\[ {} \left (-a^{2}+{\mathrm e}^{\frac {2}{x}}\right ) y+x^{4} y^{\prime \prime } = 0 \]

6245

\[ {} -2 y+x y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6246

\[ {} \left (2 x +1\right ) y-2 x^{2} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6247

\[ {} y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6248

\[ {} -\left (1+x \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6249

\[ {} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6250

\[ {} y+x \left (x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6251

\[ {} \left (-x^{2}+1\right ) y-x \left (-x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6252

\[ {} a^{2} y+2 x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6253

\[ {} -y+x \left (2 x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6254

\[ {} b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime } = 0 \]

6255

\[ {} -x^{2} y-\left (-x^{3}+1\right ) y^{\prime }+x \left (x^{3}+1\right ) y^{\prime \prime } = 0 \]

6256

\[ {} -2 y-x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6257

\[ {} \left (-x^{2}+2\right ) y-x \left (-x^{2}+2\right ) y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6258

\[ {} a \left (a +1\right ) y-2 x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6259

\[ {} y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6260

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6261

\[ {} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6262

\[ {} -\left (m^{2}-n \left (n +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6263

\[ {} -\left (k^{2}-p \left (p +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6264

\[ {} -\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6265

\[ {} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6266

\[ {} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6267

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6268

\[ {} y b^{2}+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6269

\[ {} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6270

\[ {} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime } = 0 \]

6271

\[ {} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime } = 0 \]

6272

\[ {} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6273

\[ {} -2 \left (1-x \right ) y+2 \left (3-x \right ) x \left (1+x \right ) y^{\prime }+\left (1-x \right ) x \left (1+x \right )^{2} y^{\prime \prime } = 0 \]

6274

\[ {} \left (c \,x^{2}+b x +a \right ) y+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6275

\[ {} -y+\left (1-2 x \right ) \left (1-x \right ) x y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6276

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (1-x \right ) x \left (\operatorname {b2} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6277

\[ {} b y+\left (a -x \right )^{2} x^{2} y^{\prime \prime } = 0 \]

6278

\[ {} \left (a -x \right )^{2} \left (-x +b \right )^{2} y^{\prime \prime } = k^{2} y \]

6279

\[ {} B y+\left (a -x \right ) \left (-x +b \right ) \left (A +2 x \right ) y^{\prime }+\left (a -x \right )^{2} \left (-x +b \right )^{2} y^{\prime \prime } = 0 \]

6280

\[ {} -y-2 \left (a -x \right )^{3} y^{\prime }+\left (a -x \right )^{4} y^{\prime \prime } = 0 \]

6281

\[ {} 2 \left (3 x +1\right ) y+2 \left (2-3 x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6282

\[ {} 2 \left (1-x \right ) y+2 \left (1-2 x \right ) \left (2-x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6283

\[ {} -\left (4 k^{2}+\left (4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6284

\[ {} -\left (4 k^{2}+\left (-4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6285

\[ {} -\left (a \left (a +1\right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6286

\[ {} y+\left (b x +a \right )^{4} y^{\prime \prime } = 0 \]

6287

\[ {} A y+\left (c \,x^{2}+b x +a \right )^{2} y^{\prime \prime } = 0 \]

6288

\[ {} -y+x y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6289

\[ {} \left (-2 x^{3}+1\right ) y-x \left (-2 x^{3}+1\right ) y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6290

\[ {} x^{3} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+\left (\operatorname {b0} \,x^{4}+\operatorname {a0} \right ) y^{\prime }+x \left (a^{2}-x^{2}\right ) \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6291

\[ {} a y-x^{5} y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6292

\[ {} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6293

\[ {} y+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6294

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (-x +b \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (-x +b \right )^{2} \left (c -x \right )^{2} y^{\prime \prime } = 0 \]

6295

\[ {} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6296

\[ {} \left (8 x^{4}+10 x^{2}+1\right ) y-4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6297

\[ {} \left (-a^{2}+4 b \right ) y+12 x^{5} y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6298

\[ {} \left (1-a \right )^{2} y+a \,x^{2 a -1} y^{\prime }+x^{2 a} y^{\prime \prime } = 0 \]

6299

\[ {} a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime } = 0 \]

6300

\[ {} \left (\operatorname {a2} +\operatorname {b2} \,x^{k}\right ) y+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) y^{\prime }+x^{2} \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime \prime } = 0 \]