6.233 Problems 23201 to 23300

Table 6.465: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23201

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 x} \sin \left (3 x \right ) \]

23202

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = x^{2} \]

23203

\[ {} y^{\prime \prime }-4 y = 12 \]

23204

\[ {} x^{\prime \prime }+4 x = 2 t +\sin \left (2 t \right ) \]

23205

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{x} \]

23206

\[ {} 16 y+8 y^{\prime }+y^{\prime \prime } = x \left (12-{\mathrm e}^{-4 x}\right ) \]

23207

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

23208

\[ {} [x^{\prime }\left (t \right )+y \left (t \right ) = 4, x \left (t \right )-y^{\prime }\left (t \right ) = 3] \]

23209

\[ {} [x^{\prime \prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = t, x^{\prime \prime }\left (t \right )-y^{\prime \prime }\left (t \right ) = 3 t] \]

23210

\[ {} [4 x^{\prime }\left (t \right )-2 y \left (t \right ) = \cos \left (2 t \right ), x \left (t \right )-2 y^{\prime }\left (t \right ) = 0] \]

23211

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-3 t}, 5 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = 5 \,{\mathrm e}^{-t}] \]

23212

\[ {} [4 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+3 x \left (t \right ) = E \sin \left (t \right ), 4 x \left (t \right )+2 x^{\prime }\left (t \right )+3 y \left (t \right ) = 0] \]

23213

\[ {} -y+y^{\prime \prime } = 0 \]

23214

\[ {} y^{\prime \prime }+y = 0 \]

23215

\[ {} y^{\prime \prime }-4 y = 0 \]

23216

\[ {} 4 y+y^{\prime \prime } = 0 \]

23217

\[ {} y+x y^{\prime \prime } = x \,{\mathrm e}^{x} \]

23218

\[ {} y^{\prime }+y = 0 \]

23219

\[ {} y^{\prime }-y = 0 \]

23220

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23221

\[ {} x^{2} y^{\prime \prime }+y^{\prime } = 2 \]

23222

\[ {} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}} \]

23223

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

23224

\[ {} m s^{\prime \prime } = \frac {g \,t^{2}}{2} \]

23225

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {y-y^{\prime }}{x} \]

23226

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

23227

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 1 \]

23228

\[ {} y^{\prime } = \sqrt {y} \]

23229

\[ {} y^{\prime }-2 y = \left (1-x \right ) {\mathrm e}^{x} \]

23230

\[ {} y^{\prime \prime \prime } = 0 \]

23231

\[ {} y y^{\prime }-y^{2} = x^{2} \]

23232

\[ {} y^{\prime \prime }+y = \cos \left (x \right )^{2} \]

23233

\[ {} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+y\right ) \]

23234

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{2 x y} \]

23235

\[ {} y^{\prime } = -\frac {x^{2}+y^{2}}{2 x y} \]

23236

\[ {} y^{\prime }+x y = 3 \]

23237

\[ {} x y^{\prime }+y = 3 \]

23238

\[ {} y^{\prime } = \frac {x -y}{x +y} \]

23239

\[ {} y^{\prime } = \sqrt {y} \]

23240

\[ {} y^{\prime } = y^{{2}/{3}} \]

23241

\[ {} y^{\prime } = \frac {x -y}{x +y} \]

23242

\[ {} x y^{\prime }+\frac {y}{2 x +3} = \ln \left (x -2\right ) \]

23243

\[ {} x^{\prime } = \frac {a x^{{5}/{6}}}{\left (-B t +b \right )^{{3}/{2}}} \]

23244

\[ {} x y^{\prime }-y = 1 \]

23245

\[ {} y^{\prime }-x y = -x^{2}+1 \]

23246

\[ {} x y^{\prime }+y^{2} = 1 \]

23247

\[ {} y^{\prime } = y-x \]

23248

\[ {} y^{\prime } = x y \]

23249

\[ {} y^{\prime } = x^{2}+y^{2} \]

23250

\[ {} x y^{\prime }+\left (1+x \right ) y = 0 \]

23251

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

23252

\[ {} y^{\prime } = \sqrt {y} \]

23253

\[ {} x y^{\prime }+y = 3 \]

23254

\[ {} y^{\prime }+x y = 3 \]

23255

\[ {} p^{\prime } = a p-b p^{2} \]

23256

\[ {} x y^{\prime }-\frac {y}{\ln \left (x \right )} = x y^{2} \]

23257

\[ {} y y^{\prime } = y+x^{2} \]

23258

\[ {} y^{\prime } = x -x y-y+1 \]

23259

\[ {} 3 x y+\left (x^{2}+4\right ) y^{\prime } = 0 \]

23260

\[ {} \cos \left (x \right ) \sin \left (y\right ) y^{\prime }-\cos \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) = 0 \]

23261

\[ {} y y^{\prime } = y^{2} x^{3}+x y^{2} \]

23262

\[ {} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0 \]

23263

\[ {} \left (1+y^{2}\right ) \cos \left (x \right ) = 2 \left (1+\sin \left (x \right )^{2}\right ) y y^{\prime } \]

23264

\[ {} y^{\prime } = \frac {y \left (b_{2} x +b_{1} \right )}{x \left (a_{1} +a_{2} y\right )} \]

23265

\[ {} x^{\prime } = k \left (a -x\right ) \left (b -x\right ) \]

23266

\[ {} y^{\prime } = \frac {\left (a -x \right ) y}{d \,x^{2}+c x +b} \]

23267

\[ {} x y^{\prime }+y = 3 \]

23268

\[ {} x y^{\prime }+y = 3 x \]

23269

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

23270

\[ {} x y^{\prime }+\left (1+x \right ) y = 0 \]

23271

\[ {} x y^{\prime }-y = 2 x^{2} \]

23272

\[ {} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3} \]

23273

\[ {} y^{\prime }-\frac {3 y}{x -1} = \left (x -1\right )^{4} \]

23274

\[ {} x y^{\prime }+6 y = 3 x +1 \]

23275

\[ {} y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2} = 0 \]

23276

\[ {} {\mathrm e}^{x}+x^{3} y^{\prime }+4 x^{2} y = 0 \]

23277

\[ {} x y^{\prime }+y = x^{5} \]

23278

\[ {} y^{\prime }-\frac {x}{x^{2}+1} = -\frac {x y}{x^{2}+1} \]

23279

\[ {} y y^{\prime }-7 y = 6 x \]

23280

\[ {} y y^{\prime }+x = y \]

23281

\[ {} y^{\prime }-\frac {y}{x} = -\frac {1}{2 y} \]

23282

\[ {} y^{\prime }+\frac {y}{x} = -2 x y^{2} \]

23283

\[ {} y^{\prime }-2 x y = 4 x \sqrt {y} \]

23284

\[ {} x y^{\prime }-\frac {y}{2 \ln \left (x \right )} = y^{2} \]

23285

\[ {} y^{\prime }-x y = \left (-x^{2}+1\right ) {\mathrm e}^{\frac {x^{2}}{2}} \]

23286

\[ {} x y^{\prime }+y = 2 x \]

23287

\[ {} x y^{\prime }-\frac {y}{\ln \left (x \right )} = 0 \]

23288

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = -2 x \]

23289

\[ {} \left (1-x \right ) y^{\prime }+x y = x \left (x -1\right )^{2} \]

23290

\[ {} \left (x -1\right ) y^{\prime }-3 y = \left (x -1\right )^{5} \]

23291

\[ {} y^{\prime }-2 x y = x^{2} \]

23292

\[ {} y^{\prime } = \left (1-y\right ) \left (\frac {1}{t}-\frac {1}{10}+\frac {y}{10}\right ) \]

23293

\[ {} y^{\prime } = \left (1-y\right ) \left (-\frac {1}{t \ln \left (t \right )}-\frac {3}{100}+\frac {3 y}{100}\right ) \]

23294

\[ {} x -y+\left (y-x +2\right ) y^{\prime } = 0 \]

23295

\[ {} x +y+\left (x -y\right ) y^{\prime } = 0 \]

23296

\[ {} y^{\prime } = \frac {-x +y+1}{y-x +3} \]

23297

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

23298

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

23299

\[ {} y^{\prime } = \sqrt {y} \]

23300

\[ {} y \,{\mathrm e}^{x y}+\left (x \,{\mathrm e}^{x y}+1\right ) y^{\prime } = 0 \]