| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 x} \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = 2 t +\sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 y+8 y^{\prime }+y^{\prime \prime } = x \left (12-{\mathrm e}^{-4 x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y \left (t \right ) = 4, x \left (t \right )-y^{\prime }\left (t \right ) = 3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = t, x^{\prime \prime }\left (t \right )-y^{\prime \prime }\left (t \right ) = 3 t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [4 x^{\prime }\left (t \right )-2 y \left (t \right ) = \cos \left (2 t \right ), x \left (t \right )-2 y^{\prime }\left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-3 t}, 5 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = 5 \,{\mathrm e}^{-t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [4 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+3 x \left (t \right ) = E \sin \left (t \right ), 4 x \left (t \right )+2 x^{\prime }\left (t \right )+3 y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m s^{\prime \prime } = \frac {g \,t^{2}}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {y-y^{\prime }}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = \left (1-x \right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }-y^{2} = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x^{2}+y^{2}}{2 x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {x^{2}+y^{2}}{2 x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 3
\]
|
✗ |
✗ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y}{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y}{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+\frac {y}{2 x +3} = \ln \left (x -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {a x^{{5}/{6}}}{\left (-B t +b \right )^{{3}/{2}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = -x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = a p-b p^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-\frac {y}{\ln \left (x \right )} = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = y+x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x -x y-y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y+\left (x^{2}+4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) \sin \left (y\right ) y^{\prime }-\cos \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = y^{2} x^{3}+x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) \cos \left (x \right ) = 2 \left (1+\sin \left (x \right )^{2}\right ) y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y \left (b_{2} x +b_{1} \right )}{x \left (a_{1} +a_{2} y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = k \left (a -x\right ) \left (b -x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (a -x \right ) y}{d \,x^{2}+c x +b}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = 2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-\frac {3 y}{x -1} = \left (x -1\right )^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+6 y = 3 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x}+x^{3} y^{\prime }+4 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = x^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {x}{x^{2}+1} = -\frac {x y}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }-7 y = 6 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+x = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {y}{x} = -\frac {1}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = -2 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = 4 x \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-\frac {y}{2 \ln \left (x \right )} = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = \left (-x^{2}+1\right ) {\mathrm e}^{\frac {x^{2}}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-\frac {y}{\ln \left (x \right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = -2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime }+x y = x \left (x -1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime }-3 y = \left (x -1\right )^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1-y\right ) \left (\frac {1}{t}-\frac {1}{10}+\frac {y}{10}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1-y\right ) \left (-\frac {1}{t \ln \left (t \right )}-\frac {3}{100}+\frac {3 y}{100}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y+\left (y-x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {-x +y+1}{y-x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{x y}+\left (x \,{\mathrm e}^{x y}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|